A Differential Protein Study on Bronchoalveolar Lavage Fluid at Different Stages of Silicosis.

Comb Chem High Throughput Screen

Hebei Province Key Laboratory of Occupational Health and Safety for Coal Industry, School of Public Health, North China University of Science and Technology, Tangshan, Hebei, 063210, P.R. China.

Published: September 2024

Objectives: In this study, by comparing the difference in protein expression in bronchoalveolar lavage fluid between silicosis patients in different stages and healthy controls, the pathogenesis of pneumoconiosis was discussed, and a new idea for the prevention and treatment of pneumoconiosis was provided.

Methods: The lung lavage fluid was pretreated by 10 K ultrafiltration tube, Agilent 1100 conventional liquid phase separation, strong cation exchange column (SCX) HPLC pre-separation, and C18 reverse phase chromatography desalting purification, and protein was labeled with isotope. GO, KEGG pathway, and PPI analysis of differential proteins were conducted by bioinformatics, and protein types and corresponding signal pathways were obtained.

Results: Thermo Q-Exactive mass spectrometry identified 943 proteins. T-test analysis was used to evaluate the different significance of the results, and the different protein of each group was obtained by screening with the Ratio≥1.2 or Ratio≤0.83 and P<0.05. We found that there are 16 kinds of protein throughout the process of silicosis. There are different expressions of protein in stages III/control, stages II/control, stage I/control, stages III/ stages II, stages III/ stage I and stages II/ stage I groups. The results of ontology enrichment analysis of total differential protein genes show that KEGG pathway enrichment analysis of differential protein suggested that there were nine pathways related to silicosis.

Conclusion: The main biological changes in the early stage of silicosis are glycolysis or gluconeogenesis, autoimmunity, carbon metabolism, phagocytosis, etc., and microfibril-associated glycoprotein 4 may be involved in the early stage of silicosis. The main biological changes in the late stage of silicosis are autoimmunity, intercellular adhesion, etc. Calcium hippocampus binding protein may participate in the biological changes in the late stage of silicosis. It provides a new idea to understand the pathogenesis of silicosis and also raises new questions for follow-up research.

Download full-text PDF

Source
http://dx.doi.org/10.2174/0113862073260760231023055036DOI Listing

Publication Analysis

Top Keywords

lavage fluid
12
bronchoalveolar lavage
8
differential protein
4
protein study
4
study bronchoalveolar
4
fluid stages
4
stages silicosis
4
silicosis objectives
4
objectives study
4
study comparing
4

Similar Publications

The presence of high-risk human papillomavirus (HR-HPV) contributes to the development of cervical lesions and cervical cancer. Recent studies suggest that an imbalance in the cervicovaginal microbiota might be a factor in the persistence of HR-HPV infections. In this study, we collected 156 cervicovaginal fluid (CVF) of women with HR-HPV infection, which were divided into three groups (negative for intraepithelial lesions = 78, low/high-grade squamous intraepithelial lesions = 52/26).

View Article and Find Full Text PDF

Background: Diagnostics for neurodegenerative diseases lack non-invasive approaches suitable for early-stage biochemical screening and routine examination of neuropathology. Biomarkers of neurodegenerative diseases pass through the brain-nose interface (BNI) and accumulate in nasal secretion. Sample collection from the brain-nose interface presents a compelling prospect as basis for a non-invasive molecular diagnosis of neuropathologies.

View Article and Find Full Text PDF

As an advanced nucleic acid therapeutical modality, mRNA can express any type of protein in principle and thus holds great potential to prevent and treat various diseases. Despite the success in COVID-19 mRNA vaccines, direct local delivery of mRNA into the lung by inhalation would greatly reinforce the treatment of pulmonary pathogens and diseases. Herein, we developed lipid nanoparticles (LNPs) from degradable ionizable glycerolipids for potent pulmonary mRNA delivery via nebulization.

View Article and Find Full Text PDF

The electrochemical biosensor has brought a paradigm shift in the field of sensing due to its fast response and easy operability. The performance of electrochemical sensors can be modified by coupling them with various metal oxides, nanomaterials, and nanocomposites. Hydrogen peroxide is a short-lived reactive oxygen species that plays a crucial role in various physiological and biological processes.

View Article and Find Full Text PDF

Low-dose radiation ameliorates PM2.5-induced lung injury through non-canonical TLR1/TLR2-like receptor pathways modulated by Akkermansia muciniphila.

Ecotoxicol Environ Saf

January 2025

NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, Jilin 130021, PR China. Electronic address:

Exposure of PM2.5 can cause different degrees of lung injury, which is referred with inflammatory response. Some evidences showed that low-dose radiation (LDR) induces hormesis in immune, however, it is unknown if LDR ameliorates the PM2.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!