Purpose: Radiotherapy-activated NBTXR3 (NBTXR3 + RT) has demonstrated superior efficacy in cancer cell destruction and tumor growth control, compared to radiotherapy (RT), in preclinical and clinical settings. Previous studies highlighted the immunomodulatory properties of NBTXR3 + RT, such as modification of tumor cell immunogenicity/adjuvanticity, producing an effective local tumor control and abscopal effect, related to an enhanced antitumor immune response. Furthermore, NBTXR3 + RT has shown potential in restoring anti-PD1 efficacy in a refractory tumor model. However, the early events leading to these results, such as NBTXR3 endocytosis, intracellular trafficking and primary biological responses induced by NBTXR3 + RT remain poorly understood.
Methods: We analyzed by transmission electron microscopy endocytosis and intracellular localization of NBTXR3 nanoparticles after endocytosis in various cell lines, in vitro and in vivo. A kinetic of NBTXR3 endocytosis and its impact on lysosomes was conducted using LysoTracker staining, and a RNAseq analysis was performed. We investigated the ability of NBTXR3 + RT to induce lysosomal membrane permeabilization (LMP) and ferroptosis by analyzing lipid peroxidation. Additionally, we evaluated the recapture by cancer cells of NBTXR3 released from dead cells.
Results: NBTXR3 nanoparticles were rapidly internalized by cells mainly through macropinocytosis and in a less extend by clathrin-dependent endocytosis. NBTXR3-containing endosomes were then fused with lysosomes. The day following NBTXR3 addition, we measured a significant increase in LysoTracker lysosome labeling intensity, in vitro as in vivo. Following RT, a significant lysosomal membrane permeabilization (LMP) was measured exclusively in cells treated with NBTXR3 + RT, while RT had no effect. The day post-irradiation, a significant increase in lipid peroxidation, a biomarker of ferroptosis, was measured with NBTXR3 + RT compared to RT. Moreover, we demonstrated that NBTXR3 nanoparticles released from dead cells can be recaptured by cancer cells.
Conclusions: Our findings provide novel insights into the early and specific biological effects induced by NBTXR3 + RT, especially LMP, not induced by RT in our models. The subsequent significant increase in lipid peroxidation partially explains the enhanced cancer cell killing capacity of NBTXR3 + RT compared to RT, potentially by promoting ferroptosis. This study improves our understanding of the cellular mechanisms underlying NBTXR3 + RT and highlights its potential as an agnostic therapeutic strategy for solid cancers treatment.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10762921 | PMC |
http://dx.doi.org/10.1186/s13046-023-02938-0 | DOI Listing |
Cancer Radiother
November 2024
Radiotherapy Department, Grenoble Alps University Hospital, Grenoble, France; Inserm UA7, University of Grenoble Alps, Synchrotron Radiation for Biomedical Research (ESRF), Grenoble, France.
J Nanobiotechnology
October 2024
Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, 6565 MD Anderson Blvd, Houston, TX, 77030, USA.
Recent findings suggest that immunoradiotherapy (IRT), combining photon radiotherapy (XRT) or proton radiotherapy (PRT) with immune checkpoint blockade, can enhance systemic tumor control. However, the comparative efficacy of XRT and PRT in IRT remains understudied. To address this, we compared outcomes between XRT + αPD1 and PRT + αPD1 in murine αPD1-resistant lung cancer (344SQR).
View Article and Find Full Text PDFHead Neck
June 2024
Department of Head and Neck Surgical Oncology, PSL University, Institut Curie, Paris, France.
Background: An international multidisciplinary panel of experts aimed to provide consensus guidelines describing the optimal intratumoral and intranodal injection of NBTXR3 hafnium oxide nanoparticles in head and neck squamous cell carcinoma (HNSCC) of the oral cavity, oropharynx, and cervical lymph nodes and to review data concerning safety, feasibility, and procedural aspects of administration.
Methods: The Delphi method was used to determine consensus. A 4-member steering committee and a 10-member monitoring committee wrote and revised the guidelines, divided into eight sections.
Curr Pharm Biotechnol
March 2024
Institute of Life Sciences, Nalco Square, Odisha, India.
Cancer is the second-leading cause of death in the 21st century, where early detection and appropriate therapeutic interventions are two components essential for effective cancer management. Despite the availability of several conventional diagnostics and therapeutic agents, cancer mortality rates are rising due to an increase in the frequency of recurrence and metastasis in cancer patients. Therefore, tremendous efforts have been expended to address this significant clinical issue and improve therapeutic efficacy.
View Article and Find Full Text PDFJ Exp Clin Cancer Res
January 2024
Nanobiotix, Paris, France.
Purpose: Radiotherapy-activated NBTXR3 (NBTXR3 + RT) has demonstrated superior efficacy in cancer cell destruction and tumor growth control, compared to radiotherapy (RT), in preclinical and clinical settings. Previous studies highlighted the immunomodulatory properties of NBTXR3 + RT, such as modification of tumor cell immunogenicity/adjuvanticity, producing an effective local tumor control and abscopal effect, related to an enhanced antitumor immune response. Furthermore, NBTXR3 + RT has shown potential in restoring anti-PD1 efficacy in a refractory tumor model.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!