Background: The process of gamete formation and early embryonic development involves rapid DNA replication, chromosome segregation and cell division. These processes may be affected by mutations in the BRCA1/2 genes. The aim of this study was to evaluate BRCA mutation inheritance and its effect on early embryonic development according to the parental origin of the mutation. The study question was approached by analyzing in vitro fertilization cycles (IVF) that included pre-implantation testing (PGT-M) for a BRCA gene mutation.

Methods: This retrospective cohort study compared cycles of pre-implantation genetic testing for mutations (PGT-M) between male and female patients diagnosed with BRCA 1/2 mutations (cases), to a control group of two other mutations with dominant inheritance (myotonic dystrophy (MD) and polycystic kidney disease (PKD)). Results were compared according to mutation type and through a generalized linear model analysis.

Results: The cohort included 88 PGT-M cycles (47 BRCA and 41 non-BRCA) among 50 patients. Maternal and paternal ages at oocyte retrieval were comparable between groups. When tested per cycle, FSH dose, maximum estradiol level, oocytes retrieved, number of zygotes, and number of embryos available for biopsy and affected embryos, were not significantly different among mutation types. All together 444 embryos were biopsied: the rate of affected embryos was comparable between groups. Among BRCA patients, the proportion of affected embryos was similar between maternal and paternal mutation origin (p = 0.24). In a generalized linear model analysis, the relative oocyte yield in maternal BRCA patients was significantly lower (0.7, as related to the non BRCA group)(p < 0.001). Zygote formation and blastulation were not affected by the BRCA gene among paternal cases (P = 0.176 and P = 0.293 respectively), nor by paternal versus maternal BRCA carriage (P = 0.904 and P = 0.149, respectively).

Conclusions: BRCA PGT-M cycles performed similarly compared to non-BRCA cycles. Inheritance rate and cycle parameters were not affected by the parental origin of the mutation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10762833PMC
http://dx.doi.org/10.1186/s12958-023-01180-9DOI Listing

Publication Analysis

Top Keywords

pre-implantation genetic
8
genetic testing
8
mutation origin
8
cohort study
8
early embryonic
8
embryonic development
8
generalized linear
8
linear model
8
maternal paternal
8
comparable groups
8

Similar Publications

WDR74-Mediated Ribosome Biogenesis and Proteome Dynamics During Mouse Preimplantation Development.

Genes Cells

January 2025

Advanced Biological Information Research Division, INAMORI Frontier Research Center, Kyushu University, Fukuoka, Japan.

Preimplantation embryonic development is orchestrated by dynamic changes in the proteome and transcriptome, regulated by mechanisms such as maternal-to-zygotic transition. Here, we employed label-free quantitative proteomics to comprehensively analyze proteome dynamics from germinal vesicle oocytes to blastocysts in mouse embryos. We identified 3490 proteins, including 715 consistently detected across all stages, revealing stage-specific changes in proteins associated with translation, protein modification, and mitochondrial metabolism.

View Article and Find Full Text PDF

Introduction: Pre-implantation testing (PGT) is often suggested by healthcare professionals (HCP) to parents of children with congenital adrenal hyperplasia (CAH) considering subsequent children. Despite this, some families choose to conceive naturally without genetic testing and intervention. The aims of this study were to explore fertility choices of couples with a child with CAH and the decision making process and perceptions behind these choices, and to explore the families' lived experiences with CAH and the couples' subsequent fertility journey.

View Article and Find Full Text PDF

Genomic imprinting is the parent-of-origin dependent monoallelic expression of genes often associated with regions of germline-derived DNA methylation that are maintained as differentially methylated regions (gDMRs) in somatic tissues. This form of epigenetic regulation is highly conserved in mammals and is thought to have co-evolved with placentation. Tissue-specific gDMRs have been identified in human placenta, suggesting that species-specific imprinting dependent on unorthodox epigenetic establishment or maintenance may be more widespread than previously anticipated.

View Article and Find Full Text PDF

Oligoasthenoteratozoospermia (OAT) is a frequent but severe type of male infertility. As one of the most multifaceted male infertility resulting from sperm problems, its genetic etiology remains unknown in most cases. In this review, we systematically sort out the latest literature on clinical reports and animal models leading to OAT, summarise the expression profiles of causative genes for OAT, and highlight the important role of the protein transport system during spermiogenesis, spermatid cell-specific genes, Golgi and acrosome-related genes, manchette-related genes, HTCA-related genes, and axoneme-related genes in OAT development.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!