The Rho GTPases - RHOA, RAC1 and CDC42 - are small GTP binding proteins that regulate basic biological processes such as cell locomotion, cell division and morphogenesis by promoting cytoskeleton-based changes in the cell cortex. This regulation results from active (GTP-bound) Rho GTPases stimulating target proteins that, in turn, promote actin assembly and myosin 2-based contraction to organize the cortex. This basic regulatory scheme, well supported by in vitro studies, led to the natural assumption that Rho GTPases function in vivo in an essentially linear matter, with a given process being initiated by GTPase activation and terminated by GTPase inactivation. However, a growing body of evidence based on live cell imaging, modelling and experimental manipulation indicates that Rho GTPase activation and inactivation are often tightly coupled in space and time via signalling circuits and networks based on positive and negative feedback. In this Review, we present and discuss this evidence, and we address one of the fundamental consequences of coupled activation and inactivation: the ability of the Rho GTPases to self-organize, that is, direct their own transition from states of low order to states of high order. We discuss how Rho GTPase self-organization results in the formation of diverse spatiotemporal cortical patterns such as static clusters, oscillatory pulses, travelling wave trains and ring-like waves. Finally, we discuss the advantages of Rho GTPase self-organization and pattern formation for cell function.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/s41580-023-00682-z | DOI Listing |
Int J Mol Sci
January 2025
Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.
Protocadherin-7 (Pcdh7) is a member of the non-clustered protocadherin δ1 subgroup within the cadherin superfamily. Pcdh7 has been shown to control osteoclast differentiation via the protein phosphatase 2A (PP2A)-glycogen synthase kinase-3β (GSK3β)-small GTPase signaling axis. As protocadherins serve multiple biological functions, a deeper understanding of Pcdh7's biological features is valuable.
View Article and Find Full Text PDFBiomolecules
December 2024
Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, China.
RACGAP1 is a Rho-GTPase-activating protein originally discovered in male germ cells to inactivate Rac, RhoA and Cdc42 from the GTP-bound form to the GDP-bound form. GAP has traditionally been known as a tumor suppressor. However, studies increasingly suggest that overexpressed RACGAP1 activates Rac and RhoA in multiple cancers to mediate downstream oncogene overexpression by assisting in the nuclear translocation of signaling molecules and to promote cytokinesis by regulating the cytoskeleton or serving as a component of the central spindle.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Surgical Pathology, Kyoto Prefectural University of Medicine, Kyoto, Japan.
Immunologic bile duct destruction is a pathogenic condition associated with vanishing bile duct syndrome (VBDS) after liver transplantation and hematopoietic stem-cell transplantation. As the bile acid receptor sphingosine 1-phosphate receptor 2 (S1PR2) plays a critical role in recruitment of bone marrow-derived monocytes/macrophages to sites of cholestatic liver injury, S1PR2 expression was examined using cultured macrophages and patient tissues. Bile canaliculi destruction precedes intrahepatic ductopenia; therefore, we focused on hepatocyte S1PR2 and the downstream RhoA/Rho kinase 1 (ROCK1) signaling pathway and bile canaliculi alterations using three-dimensional hepatocyte culture models that form obvious bile canaliculus-like networks.
View Article and Find Full Text PDFCells
January 2025
Department of Biochemistry, Hallym University College of Medicine, Chuncheon 24252, Kangwon-do, Republic of Korea.
Amyloid-β peptide (Aβ) is a critical cause of Alzheimer's disease (AD). It is generated from amyloid precursor protein (APP) through cleavages by β-secretase and γ-secretase. γ-Secretase, which includes presenilin, is regulated by several stimuli.
View Article and Find Full Text PDFCells
January 2025
Department of Cellular Pathology, Institute for Developmental Research, Aichi Developmental Disability Center, Kasugai 480-0392, Aichi, Japan.
Dendritic spine formation/maintenance is highly dependent on actin cytoskeletal dynamics, which is regulated by small GTPases Rac1 and Cdc42 through their downstream p21-activated kinase/LIM-kinase-I/cofilin pathway. ARHGEF7, also known as ß-PIX, is a guanine nucleotide exchange factor for Rac1 and Cdc42, thereby activating Rac1/Cdc42 and the downstream pathway, leading to the upregulation of spine formation/maintenance. We found that STIL, one of the primary microcephaly gene products, is associated with ARHGEF7 in dendritic spines and that knockdown of resulted in a significant reduction in dendritic spines in neurons both in vitro and in vivo.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!