This study introduces an augmented Long-Short Term Memory (LSTM) neural network architecture, integrating Symbolic Genetic Programming (SGP), with the objective of forecasting cross-sectional price returns across a comprehensive dataset comprising 4500 listed stocks in the Chinese market over the period from 2014 to 2022. Using the S&P Alpha Pool Dataset for China as basic input, this architecture incorporates data augmentation and feature extraction techniques. The result of this study demonstrates significant improvements in Rank Information coefficient (Rank IC) and IC information ratio (ICIR) by 1128% and 5360% respectively when it is applied to fundamental indicators. For technical indicators, the hybrid model achieves a 206% increase in Rank IC and an impressive surge of 2752% in ICIR. Furthermore, the proposed hybrid SGP-LSTM model outperforms major Chinese stock indexes, generating average annualized excess returns of 31.00%, 24.48%, and 16.38% compared to the CSI 300 index, CSI 500 index, and the average portfolio, respectively. These findings highlight the effectiveness of SGP-LSTM model in improving the accuracy of cross-sectional stock return predictions and provide valuable insights for fund managers, traders, and financial analysts.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10764894PMC
http://dx.doi.org/10.1038/s41598-023-50783-0DOI Listing

Publication Analysis

Top Keywords

long-short term
8
term memory
8
neural network
8
symbolic genetic
8
genetic programming
8
sgp-lstm model
8
forecasting stock
4
stock prices
4
prices changes
4
changes long-short
4

Similar Publications

We explore the efficacy of multimodal behavioral cues for explainable prediction of personality and interview-specific traits. We utilize elementary head-motion units named kinemes, atomic facial movements termed action units and speech features to estimate these human-centered traits. Empirical results confirm that kinemes and action units enable discovery of multiple trait-specific behaviors while also enabling explainability in support of the predictions.

View Article and Find Full Text PDF

In the current cybersecurity landscape, Distributed Denial of Service (DDoS) attacks have become a prevalent form of cybercrime. These attacks are relatively easy to execute but can cause significant disruption and damage to targeted systems and networks. Generally, attackers perform it to make reprisal but sometimes this issue can be authentic also.

View Article and Find Full Text PDF

Time series is a data structure prevalent in a wide range of fields such as healthcare, finance and meteorology. It goes without saying that analyzing time series data holds the key to gaining insight into our day-to-day observations. Among the vast spectrum of time series analysis, time series classification offers the unique opportunity to classify the sequences into their respective categories for the sake of automated detection.

View Article and Find Full Text PDF

Predicting EV battery state of health using long short term degradation feature extraction and FEA TimeMixer.

Sci Rep

January 2025

Hangzhou Xiangce Electronic Technology Co.Ltd, Hangzhou, 310018, China.

Accurately predicting the State of Health (SOH) of new energy vehicle batteries is critical for ensuring their reliable operation and extending battery's service life. To address the issue of low SOH prediction accuracy across different prediction lengths, this paper proposes a prediction method based on long-short-term battery degradation feature extraction and FEA-TimeMixer model. First, a novel automatic SOH extraction algorithm for offline charging data is introduced to label the battery SOH degradation data.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!