A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Mesenchymal-epithelial transition and AXL inhibitor TP-0903 sensitise triple-negative breast cancer cells to the antimalarial compound, artesunate. | LitMetric

Triple-negative breast cancer (TNBC) is a difficult-to-treat, aggressive cancer type. TNBC is often associated with the cellular program of epithelial-mesenchymal transition (EMT) that confers drug resistance and metastasis. EMT and reverse mesenchymal-epithelial transition (MET) programs are regulated by several signaling pathways which converge on a group of transcription factors, EMT- TFs. Therapy approaches could rely on the EMT reversal to sensitise mesenchymal tumours to compounds effective against epithelial cancers. Here, we show that the antimalarial ROS-generating compound artesunate (ART) exhibits higher cytotoxicity in epithelial than mesenchymal breast cancer cell lines. Ectopic expression of EMT-TF ZEB1 in epithelial or ZEB1 depletion in mesenchymal cells, respectively, reduced or increased ART-generated ROS levels, DNA damage and apoptotic cell death. In epithelial cells, ZEB1 enhanced expression of superoxide dismutase 2 (SOD2) and glutathione peroxidase 8 (GPX8) implicated in ROS scavenging. Although SOD2 or GPX8 levels were unaffected in mesenchymal cells in response to ZEB1 depletion, stable ZEB1 knockdown enhanced total ROS. Receptor tyrosine kinase AXL maintains a mesenchymal phenotype and is overexpressed in TNBC. The clinically-relevant AXL inhibitor TP-0903 induced MET and synergised with ART to generate ROS, DNA damage and apoptosis in TNBC cells. TP-0903 reduced the expression of GPX8 and SOD2. Thus, TP-0903 and ZEB1 knockdown sensitised TNBC cells to ART, likely via different pathways. Synergistic interactions between TP-0903 and ART indicate that combination approaches involving these compounds can have therapeutic prospects for TNBC treatment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10764797PMC
http://dx.doi.org/10.1038/s41598-023-50710-3DOI Listing

Publication Analysis

Top Keywords

breast cancer
12
mesenchymal-epithelial transition
8
axl inhibitor
8
inhibitor tp-0903
8
triple-negative breast
8
compound artesunate
8
zeb1 depletion
8
mesenchymal cells
8
dna damage
8
zeb1 knockdown
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!