A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 144

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 144
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 212
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1002
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3142
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Long-term application of agronomic management strategies effects on soil organic carbon, energy budgeting, and carbon footprint under rice-wheat cropping system. | LitMetric

Long-term application of agronomic management strategies effects on soil organic carbon, energy budgeting, and carbon footprint under rice-wheat cropping system.

Sci Rep

Prince Sultan Bin Abdulaziz International Prize for Water Chair, Prince Sultan Institute for Environmental, Water and Desert Research, King Saud University, 11451, Riyadh, Saudi Arabia.

Published: January 2024

In the plains of western North India, traditional rice and wheat cropping systems (RWCS) consume a significant amount of energy and carbon. In order to assess the long-term energy budgets, ecological footprint, and greenhouse gas (GHG) pollutants from RWCS with residual management techniques, field research was conducted which consisted of fourteen treatments that combined various tillage techniques, fertilization methods, and whether or not straw return was present in randomized block design. By altering the formation of aggregates and the distribution of carbon within them, tillage techniques can affect the dynamics of organic carbon in soil and soil microbial activity. The stability of large macro-aggregates (> 2 mm), small macro-aggregates (2.0-2.25 mm), and micro-aggregates in the topsoil were improved by 35.18%, 33.52%, and 25.10%, respectively, over conventional tillage (0-20 cm) using tillage strategies for conservation methods (no-till in conjunction with straw return and organic fertilizers). The subsoil (20-40 cm) displayed the same pattern. In contrast to conventional tilling with no straw returns, macro-aggregates of all sizes and micro-aggregates increased by 24.52%, 28.48%, and 18.12%, respectively, when conservation tillage with organic and chemical fertilizers was used. The straw return (aggregate-associated C) also resulted in a significant increase in aggregate-associated carbon. When zero tillage was paired with straw return, chemical, and organic fertilizers, the topsoil's overall aggregate-associated C across all aggregate proportions increased. Conversely, conventional tillage, in contrast to conservation tillage, included straw return as well as chemical and organic fertilizers and had high aggregate-associated C in the subsurface. This study finds that tillage techniques could change the dynamics of microbial biomass in soils and organic soil carbon by altering the aggregate and distribution of C therein.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10764914PMC
http://dx.doi.org/10.1038/s41598-023-48785-zDOI Listing

Publication Analysis

Top Keywords

straw return
20
tillage techniques
12
organic fertilizers
12
tillage
9
organic carbon
8
carbon tillage
8
conventional tillage
8
conservation tillage
8
chemical organic
8
organic
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!