Cannabinoid type 2 receptors play a crucial role in social defeat-induced depression.

J Affect Disord

Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai 200032, China; Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, Fudan University, Shanghai 200433, China. Electronic address:

Published: March 2024

Background: The endocannabinoid system plays a crucial role in regulating mood, but the specific involvement of cannabinoid receptor type 2 (CB2R) in depression remains poorly understood. Similarly, the mechanisms by which electroacupuncture (EA) provides therapeutic benefits for depression are not clearly defined. This research aims to explore the function of CB2R in depression and examine if the therapeutic effects of EA are associated with the hippocampal CB2R system.

Methods: Mice experiencing social defeat stress (SDS) were used to model depression and anxiety behaviors. We quantified hippocampal CB2R and N-arachidonoylethanolamide (AEA) levels. The efficacy of a CB2R agonist, JWH133, in mitigating SDS-induced behaviors was evaluated. Additionally, EA's impact on CB2R and AEA was assessed, along with the influence of CB2R antagonist AM630 on EA's antidepressant effects.

Results: SDS led to depressive and anxiety-like behaviors, with corresponding decreases in hippocampal CB2R and AEA. Treatment with JWH133 ameliorated these behaviors. EA treatment resulted in increased CB2R and AEA levels, while AM630 blocked these antidepressant effects.

Limitations: The study mainly focused on the SDS model, which may not entirely reflect other depression models. Besides, further investigation is needed to understand the precise mechanisms by which CB2R and AEA contribute to EA's effects.

Conclusions: The study suggests hippocampal downregulation of CB2R and AEA contributes to depression. Upregulation of CB2R and AEA in response to EA suggests their involvement in EA's antidepressant effects. These findings provide insights into the role of the hippocampal CB2R system in depression and the potential mechanisms underlying EA's therapeutic effects.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jad.2023.12.089DOI Listing

Publication Analysis

Top Keywords

cb2r aea
24
hippocampal cb2r
16
cb2r
13
crucial role
8
depression
8
cb2r depression
8
therapeutic effects
8
sds model
8
aea levels
8
ea's antidepressant
8

Similar Publications

Electroacupuncture ameliorates inflammatory pain through CB2 receptor-dependent activation of the AMPK signaling pathway.

Chin Med

December 2024

Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Key Laboratory of Neurological Diseases of Hubei Province and National Education Ministry, Huazhong University of Science and Technology, Wuhan, 430030, China.

Background: Chronic inflammatory pain is a pervasive condition, and electroacupuncture (EA) is an effective treatment, but its mechanisms are not fully understood. AMP-activated protein kinase (AMPK), a key energy sensor, is involved in pain relief and EA's effects. EA may work by increasing endocannabinoids, upregulating CB2 receptors (CB2R), and stimulating β-endorphin (β-END).

View Article and Find Full Text PDF

Approximately 50% of patients with chronic neuropathic pain experience cognitive impairment, which negatively impacts their quality of life. The cannabinoid type 2 receptor (CB2R) may be involved in hippocampal cognitive processes. However, its role in chronic neuropathic pain-induced cognitive impairment remains elusive.

View Article and Find Full Text PDF

The findings concerning the association between endocannabinoid system (ECS) and Alzheimer's disease (AD) exhibited inconsistencies when examining the expression levels of endocannabinoids. This study aimed to provide a comprehensive summary of the studies regarding alterations of the ECS in AD. Six databases were thoroughly searched for literature to select relevant studies investigating the ECS in AD, including changes in cannabinoid receptors (CB1R and CB2R), endocannabinoids (2-AG and AEA), and their associated enzymes (FAAH and MAGL).

View Article and Find Full Text PDF

Alzheimer's disease (AD), a progressive neurodegenerative disorder, manifests through dysregulation of brain function and subsequent loss of bodily control, attributed to β-amyloid plaque deposition and TAU protein hyperphosphorylation and aggregation, leading to neuronal death. Concurrently, similar cannabinoids to the ones derived from are present in the endocannabinoid system, acting through receptors CBR and CBR and other related receptors such as Trpv-1 and GPR-55, and are being extensively investigated for AD therapy. Given the limited efficacy and adverse effects of current available treatments, alternative approaches are crucial.

View Article and Find Full Text PDF

Background: Schisandra chinensis lignan (SCL), a major active component of the traditional functional Chinese medicine Schisandra chinensis, has been reported to have antidepressant effects. Its mechanisms include alleviating intestinal barrier injury (IBI) by resolving intestinal microflora, anti-inflammation, and neuroprotection. SCL also regulates endogenous cannabinoid system, and it is closely related to the onset and development of depression.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!