Nodal-line semimetals, characterized by Dirac-like crossings along one dimensional-space lines, represent a unique class of topological materials. In this study, we investigate the intriguing properties of room-temperature antiferromagneticMnC4and its nodal-line features both with and without spin-orbit coupling (SOC). In the absence of SOC, we identify a doubly degenerate Dirac-nodal line, robustly protected by a combination of time-reversal, mirror, and partial-translation symmetries. Remarkably, this nodal line withstands various external perturbations, including isotropic and anisotropic strain, and torsional deformations, due to the ionic-like bonding between Mn atoms and C clusters. With the inclusion of SOC, we observe a distinctive quasi-Dirac-nodal line that emerges due to the interplay between antiferromagnetism and SOC-induced spin-rotation symmetry breaking. Finally, we observed a robust spin Hall conductivity that aligns with the energy range where the quasi-nodal line appears. This study presents a compelling example of a robust symmetry-protected Dirac-nodal line antiferromagnetic monolayer, which has potential for applications in next-generation spintronic devices.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/1361-648X/ad1a7a | DOI Listing |
Sci Rep
December 2024
Department of Physics, University of Liverpool, Oxford Street, Liverpool, L69 7ZE, UK.
Topological semimetals have recently garnered widespread interest in the quantum materials research community due to their symmetry-protected surface states with dissipationless transport which have potential applications in next-generation low-power electronic devices. One such material, [Formula: see text], exhibits Dirac nodal arcs and although the topological properties of single crystals have been investigated, there have been no reports in crystalline thin film geometry. We examined the growth of [Formula: see text] heterostructures on a range of single crystals by optimizing the electron beam evaporation of Pt and Sn and studied the effect of vacuum thermal annealing on phase and crystallinity.
View Article and Find Full Text PDFJ Phys Condens Matter
December 2024
Department of Physics and Astronomy, University of Nebraska-Lincoln, Jorgenesen Hall, 855 North 16th Street, Lincoln, Nebraska, 68588-0299, UNITED STATES.
Evidence of chirality was observed at the Fe metal center in Fe(III) spin crossover coordination salts [Fe(qsal)Ni(dmit)] and [Fe(qsal)(TCNQ)] from X-ray absorption spectroscopy at the Fe 2pcore threshold. Based on the circularly polarized X-ray absorption data, the X-ray natural circular dichroism seen [Fe(qsal)Ni(dmit)] and [Fe(qsal)(TCNQ)] is far stronger than seen for [Fe(qsal)Cl] suggesting this natural circular dichroism signature is a ligand effect rather than a result of just a loss of octahedral symmetry on the Fe core. The larger the chiral effects in the Fe 2p core to bound X-ray absorption, the greater the perturbation of the Fe 2pto 2pspin-orbit splitting seen in the X-ray absorption spectra.
View Article and Find Full Text PDFUsing a full-wave theory to analyze the light beam scattering at sharp interfaces, we reexamine the anomalous spin-orbit interaction (SOI) around the Fresnel coefficient (FC) singularities. We evaluate the spin-dependent beam shifts near the singularity for three typical optical interfaces, comparing our results with existing ones. Existing theories neglect the contribution of the wave vector component near the FC singularities, potentially leading to erroneous results.
View Article and Find Full Text PDFPhys Rev Lett
December 2024
QCD Labs, QTF Centre of Excellence, Department of Applied Physics, Aalto University, P.O. Box 13500, FI-00076 Aalto, Finland.
Ordered media often support vortex structures with intriguing topological properties. Here, we investigate non-Abelian vortices in tetrahedral order using the mathematical formalism of colored links. Due to the generality of our methods, the results apply to all physical systems governed by tetrahedral order, such as the cyclic phase of spin-2 Bose-Einstein condensates and the tetrahedratic phase of bent-core nematic liquid crystals.
View Article and Find Full Text PDFAdv Mater
December 2024
Key Laboratory of Advanced Materials (MOE), School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China.
The orbital Hall effect originating from light materials with weak spin-orbit coupling, has attracted considerable interest in spintronic applications. Recent studies demonstrate that orbital currents can be generated from charge currents through the orbital Hall effect in ferromagnetic materials. However, the generation of orbital currents in antiferromagnets has so far been elusive.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!