The high economic value and increased demand for timber have led to illegal logging and overexploitation, threatening wild populations. In this context, there is an urgent need to develop effective and accurate forensic tools for identifying endangered Guibourtia timber species to protect forest ecosystem resources and regulate their trade. In this study, a hybridization capture method was developed and applied to explore the feasibility of retrieving complete plastid genomes from Guibourtia sapwood and heartwood specimens stored in a xylarium (wood collection). We then carried out forensic identification and phylogenetic analyses of Guibourtia within the subfamily Detarioideae. This study is the first to successfully retrieve high-quality plastid genomes from xylarium specimens, with 76.95-99.97% coverage. The enrichment efficiency, sequence depth, and coverage of plastid genomes from sapwood were 16.73 times, 70.47 times and 1.14 times higher, respectively, than those from heartwood. Although the DNA capture efficiency of heartwood was lower than that of sapwood, the hybridization capture method used in this study is still suitable for heartwood DNA analysis. Based on the complete plastid genome, we identified six endangered or commonly traded Guibourtia woods at the species level. This technique also has the potential for geographical traceability, especially for Guibourtia demeusei and Guibourtia ehie. Meanwhile, Bayesian phylogenetic analysis suggested that these six Guibourtia species diverged from closely related species within the subfamily Detarioideae ca. 18 Ma during the Miocene. The DNA reference database established based on the xylarium specimens provides admissible evidence for diversity conservation and evolutionary analyses of endangered Guibourtia species.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.fsigen.2023.103006 | DOI Listing |
BMC Plant Biol
December 2024
International Biological Material Research Center (IBMRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, South Korea.
PhytoKeys
December 2024
Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China Kunming Institute of Botany, Chinese Academy of Sciences Kunming China.
A new natural hybrid fern, Dryopteris×subdiffracta (Dryopteridaceae), is reported from Guangxi, China. Molecular phylogenetic analysis based on DNA sequences from the low-copy nuclear marker and plastid genome revealed respectively that and are parents of the new hybrid, with as the maternal parent. Cytometric analysis of the nuclear DNA content indicated that might be a diploid hybrid.
View Article and Find Full Text PDFFront Plant Sci
December 2024
Research Center for Applied Botany, National Research and Innovation Agency, Bogor, Indonesia.
BMC Plant Biol
December 2024
Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, School of Life Sciences, Fudan University, Shanghai, 200433, China.
Background: Dioscorea polystachya and its closely related species are original plants of the tuber crop "yam", which had been intensively use for medicinal and food purposes and widely cultivated in northern China and its surrounding areas with a long history. Many cultivars of these species are often confused with one another because of similar tuber morphology, however, conventional DNA barcoding faces practical limitations restricting the method to effectively identify closely related species. In addition, phylogenetic relationships among various cultivar groups of Chinese yam (D.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!