Setup errors are an important factor in the dosimetric accuracy of radiotherapy delivery. In this study, we investigated how rotational setup errors influence the dose distribution in volumetric modulated arc therapy (VMAT) and tangential field-in-field (FiF) treatment of left-sided breast cancer with supraclavicular lymph node involvement in deep inspiration breath hold. Treatment planning computed tomography images and radiotherapy plans of 20 patients were collected retrospectively for the study. Rotational setup errors up to 3° were simulated by rotating the planning images, and the resulting dosimetric changes were calculated. With rotational setup errors up to 3°, the median decrease of V to clinical target volume was less than 0.8 percentage point in both VMAT and FiF plans. The dose distribution of the heart and left anterior descending artery was more stable with respect to rotations in VMAT plans compared to FiF plans. Correction of ≥1° setup errors is recommended due to increased doses to the heart and left anterior descending artery after 1° setup errors.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ejmp.2023.103203 | DOI Listing |
Polymers (Basel)
January 2025
Department of Mechanical Engineering, National Cheng Kung University, Tainan 701401, Taiwan.
This study developed a scientific process parameter setup based on nozzle pressure and screw position, with the process parameter search sequence being injection speed, / switchover position, packing pressure, and packing time. Unlike previous studies, this study focuses on the scientific process parameter setup of experiments and simulations, as well as on the implementation of calibration. Experiments and simulations had the same trend of results in the scientific process parameter setup.
View Article and Find Full Text PDFSensors (Basel)
January 2025
Department of Computer-Integrated Technologies of Device Production, Faculty of Instrumentation Engineering, National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute", Beresteiskyi Ave., 37, 03056 Kyiv, Ukraine.
This study presents a method for aligning the geometric parameters of images in multi-channel imaging systems based on the application of pre-processing methods, machine learning algorithms, and a calibration setup using an array of orderly markers at the nodes of an imaginary grid. According to the proposed method, one channel of the system is used as a reference. The images from the calibration setup in each channel determine the coordinates of the markers, and the displacements of the marker centers in the system's channels relative to the coordinates of the centers in the reference channel are then determined.
View Article and Find Full Text PDFSensors (Basel)
January 2025
Division of Robotics, Swinburne University of Technology, Hawthorn, VIC 3122, Australia.
Wearable motion capture gloves enable the precise analysis of hand and finger movements for a variety of uses, including robotic surgery, rehabilitation, and most commonly, virtual augmentation. However, many motion capture gloves restrict natural hand movement with a closed-palm design, including fabric over the palm and fingers. In order to alleviate slippage, improve comfort, reduce sizing issues, and eliminate movement restrictions, this paper presents a new low-cost data glove with an innovative open-palm and finger-free design.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
Department of Materials Science and Metallurgical Engineering and Inorganic Chemistry, Faculty of Sciences, University of Cadiz, Campus Río San Pedro S/N, 11510 Cadiz, Spain.
A growing need to reduce the environmental impact and cost of manufacturing stainless steels has led to the development of ferritic stainless steel as an alternative to austenitic and duplex steels. The development of new stainless steels involves the optimization of their hot rolling processes, with the aim of minimizing the occurrence of defects and improving productivity. In this context, numerical simulation using the finite element method (FEM) is presented as a key tool to reduce the time and cost associated with traditional trial-and-error optimization methods.
View Article and Find Full Text PDFMed Phys
January 2025
Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Kraków, Poland.
Background: Total-body (TB) Positron Emission Tomography (PET) is one of the most promising medical diagnostics modalities, opening new perspectives for personalized medicine, low-dose imaging, multi-organ dynamic imaging or kinetic modeling. The high sensitivity provided by total-body technology can be advantageous for novel tomography methods like positronium imaging, demanding the registration of triple coincidences. Currently, state-of-the-art PET scanners use inorganic scintillators.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!