Self-controllable proteinic antibacterial coating with bacteria-triggered antibiotic release for prevention of periprosthetic infection.

Biomaterials

Department of Chemical Engineering, Pohang University of Science and Technology, Pohang 37673, Republic of Korea; Medical Science and Engineering, School of Convergence Science and Technology, Pohang University of Science and Technology, Pohang 37673, Republic of Korea. Electronic address:

Published: March 2024

Periprosthetic infection is a devastating postimplantation complication in which a biofilm layer harboring invasive microorganisms forms around orthopedic implants, leading to severe implant failure and patient morbidity. Despite the development of several infection-triggered antibiotic release approaches, most current antibacterial coatings are susceptible to undesired antibiotic leakage or mechanical disintegration during prosthesis installation. Herein, we propose a self-controllable proteinic antibacterial coating capable of both long-lasting adherence onto titanium implant substrates over the implant fixation period and instantaneous bacterial eradication. Importantly, the pH-dependent reversible metal coordination of mussel adhesive protein (MAP) enabled bacterial concentration-dependent antibiotic delivery in response to infection-induced acidification. In addition, the MAP coating exhibited superior self-healable adhesive properties and scratch resistance, which enabled to avert issues associated with mechanical damages, including peeling and cracking, often occurring in conventional implant coating systems. The gentamicin-loaded MAP coating exhibited complete inhibition of bacterial growth in vivo against Staphylococcus aureus penetrations during implantation surgery (immediate infection) and even 4 weeks after implantation (delayed infection). Thus, our antibiotic-loaded MAP hydrogel coating can open new avenues for self-defensive antibiotic prophylaxis to achieve instant and sustainable bacteriocidal activity in orthopedic prostheses. © 2017 Elsevier Inc. All rights reserved.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biomaterials.2023.122457DOI Listing

Publication Analysis

Top Keywords

self-controllable proteinic
8
proteinic antibacterial
8
antibacterial coating
8
antibiotic release
8
periprosthetic infection
8
map coating
8
coating exhibited
8
coating
6
antibiotic
5
coating bacteria-triggered
4

Similar Publications

Self-controllable proteinic antibacterial coating with bacteria-triggered antibiotic release for prevention of periprosthetic infection.

Biomaterials

March 2024

Department of Chemical Engineering, Pohang University of Science and Technology, Pohang 37673, Republic of Korea; Medical Science and Engineering, School of Convergence Science and Technology, Pohang University of Science and Technology, Pohang 37673, Republic of Korea. Electronic address:

Periprosthetic infection is a devastating postimplantation complication in which a biofilm layer harboring invasive microorganisms forms around orthopedic implants, leading to severe implant failure and patient morbidity. Despite the development of several infection-triggered antibiotic release approaches, most current antibacterial coatings are susceptible to undesired antibiotic leakage or mechanical disintegration during prosthesis installation. Herein, we propose a self-controllable proteinic antibacterial coating capable of both long-lasting adherence onto titanium implant substrates over the implant fixation period and instantaneous bacterial eradication.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!