Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Immobilization of uranyl by indigenous microorganisms has been proposed as an economic and clean in-situ approach for removal of uranium, but the potential mechanisms of the process and the stability of precipitated uranium in the presence of widespread Fe(III) (hydr)oxides remain elusive. The potential of iron to serve as a reductant and/or an oxidant of uranium indicates that bioemediation strategies which mainly rely on the reduction of highly soluble U(VI) to poorly soluble U(IV) minerals to retard uranium transport in groundwater may be enhanced or hindered under different environmental conditions. This study purposes to determine the effect of ubiquitous Fe(III) (hydr)oxides (two-line ferrihydrite, hematite and goethite) on the removal of U(VI) by Leifsonia sp. isolated from an acidic tailings pond in China. The removal mechanism was elucidated via SEM-EDS, XPS and Mössbauer. The results show that the removal of U(VI) was retarded by Fe(III) (hydr)oxides when the initial concentration of U(VI) was 10 mg/L, pH was 6, temperature was 25 °C. Particularly, the retardatory effect of hematite on U(VI) removal was blindingly obvious. Also, it is worth noting that the U(VI) in the precipitate slow-released in the Fe(III) (hydrodr) oxide treatment groups, accompanied by an increase in Fe(II) concentration. SEM-EDS results demonstrated that the ferrihydrite converted to goethite may be the reason for U(VI) release in the process of 15 days culture. Mössbauer spectra fitting results further imply that the metastable iron oxides were transformed into stable FeO state. XPS measurements results showed that uranium product is most likely a mixture of Iron-U(IV) and Iron-U(VI), which indicated that the hexavalent uranium was converted into tetravalent uranium. These observations imply that the stability of the uranium in groundwater may be impacted on the prevailing environmental conditions, especially the solid-phase Fe(III) (hydr)oxide in groundwater or sediment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jenvrad.2023.107367 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!