A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Software-defined traffic light preemption for faster emergency medical service response in smart cities. | LitMetric

Software-defined traffic light preemption for faster emergency medical service response in smart cities.

Accid Anal Prev

IoT Lab, Department of Engineering and Architecture, University of Parma, Parma, Italy. Electronic address:

Published: March 2024

Proper management of rescue operations following an accident is one of the most fundamental challenges faced by today's smart cities. Taking advantage of vehicular communications, in this paper we propose novel mechanisms for the acceleration of the rescue operation resulting in a reduction in fatalities in accidents. We propose a Software-Defined Traffic Light Preemption (SD-TLP) mechanism that enables Emergency Medical Vehicles (EMVs) to travel along the rescue route with minimal interruptions. The SD-TLP makes preemption decisions based on global knowledge of the traffic conditions in the city. We also propose mechanisms for the selection of the nearest emergency center and fast discharge of the route of EMVs. Furthermore, depending on the dynamic traffic conditions on the streets at the time of the accident, an appropriate rescue route is selected for the EMV before its departure. The proposed approach is evaluated using the OMNET++ and SUMO tools over part of the Megacity of Tabriz, Iran. The simulation results demonstrate that the method can reduce the average rescue time significantly. The proposed approach keeps the resulting disruption in city traffic acceptably low while trying to shorten the rescue time as much as possible.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.aap.2023.107425DOI Listing

Publication Analysis

Top Keywords

software-defined traffic
8
traffic light
8
light preemption
8
emergency medical
8
smart cities
8
rescue route
8
traffic conditions
8
proposed approach
8
rescue time
8
rescue
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!