is an opportunistic pathogen which causes chronic, drug-resistant lung infections in cystic fibrosis (CF) patients. In this study, we explore the role of genomic diversification and evolutionary trade-offs in antimicrobial resistance (AMR) diversity within populations sourced from CF lung infections. We analyzed 300 clinical isolates from four CF patients (75 per patient) and found that genomic diversity is not a consistent indicator of phenotypic AMR diversity. Remarkably, some genetically less diverse populations showed AMR diversity comparable to those with significantly more genetic variation. We also observed that hypermutator strains frequently exhibited increased sensitivity to antimicrobials, contradicting expectations from their treatment histories. Investigating potential evolutionary trade-offs, we found no substantial evidence of collateral sensitivity among aminoglycoside, beta-lactam, or fluoroquinolone antibiotics, nor did we observe trade-offs between AMR and growth in conditions mimicking CF sputum. Our findings suggest that (i) genomic diversity is not a prerequisite for phenotypic AMR diversity, (ii) hypermutator populations may develop increased antimicrobial sensitivity under selection pressure, (iii) collateral sensitivity is not a prominent feature in CF strains, and (iv) resistance to a single antibiotic does not necessarily lead to significant fitness costs. These insights challenge prevailing assumptions about AMR evolution in chronic infections, emphasizing the complexity of bacterial adaptation during infection.IMPORTANCEUpon infection in the cystic fibrosis (CF) lung, rapidly acquires genetic mutations, especially in genes involved in antimicrobial resistance (AMR), often resulting in diverse, treatment-resistant populations. However, the role of bacterial population diversity within the context of chronic infection is still poorly understood. In this study, we found that hypermutator strains of in the CF lung undergoing treatment with tobramycin evolved increased sensitivity to tobramycin relative to non-hypermutators within the same population. This finding suggests that antimicrobial treatment may only exert weak selection pressure on populations in the CF lung. We further found no evidence for collateral sensitivity in these clinical populations, suggesting that collateral sensitivity may not be a robust, naturally occurring phenomenon for this microbe.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10865868 | PMC |
http://dx.doi.org/10.1128/mbio.03109-23 | DOI Listing |
J Cardiovasc Dev Dis
January 2025
Department of Neurology, University Hospital in Ostrava, 70800 Ostrava, Czech Republic.
The e-STROKE study is a prospective, multicenter observational study designed to assess the impact of various CT parameters (including e-ASPECT, CT perfusion (CTP), collateral flow status, and the size and location of the ischemic lesion) on the clinical outcomes of patients with ischemic stroke, as evaluated by the modified Rankins Scale (mRS) three months post-stroke. This study also aims to investigate whether the use of multimodal CT imaging increases the number of patients eligible for recanalization therapy. The analysis will integrate data from the RES-Q registry and radiological data from the e-STROKE system provided by Brainomix Ltd.
View Article and Find Full Text PDFACS Synth Biol
January 2025
Department of Chemical and Biomolecular Engineering (BK21 Four), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea.
We herein developed an ultrasensitive and rapid strategy to identify genomic nucleic acids by integrating a clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 13a (Cas13a) into our recently developed isothermal technique, nicking and extension chain reaction system-based amplification (NESBA) reaction. In this technique, named CESBA, the NESBA reaction isothermally produces a large amount of RNA amplicons from the initial target genomic RNA (gRNA). The RNA amplicons bind to the crispr RNA (crRNA) and activate the collateral cleavage activity of Cas13a, which would then cleave the reporter probe nearby, consequently producing the final signals.
View Article and Find Full Text PDFACS Infect Dis
January 2025
Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602, United States.
Half the world's population is at risk of developing a malaria infection, which is caused by parasites of the genus . Currently, resistance has been identified to all clinically available antimalarials, highlighting an urgent need to develop novel compounds and better understand common mechanisms of resistance. We previously identified a novel tetrahydro-β-carboline compound, PRC1590, which potently kills the malaria parasite.
View Article and Find Full Text PDFAJNR Am J Neuroradiol
January 2025
From the Department of Radiology, Medical Physics (MML, TJC), Department of Interventional Radiology (NS, GAC), Department of Surgery and Large Animal Studies (MAN), and the Department of Statistics (MG), University of Chicago, Chicago, IL, USA; Department of Anesthesiology (SPR), University of Illinois, Chicago, IL, USA; Department of Radiology (MSS), University of Massachusetts Chan Medical School, Worcester, MA, USA; Department of Radiology, Biomedical Engineering and Imaging Institute (Current affiliation MML), Icahn School of Medicine at Mount Sinai, New York, NY, USA; Mount Carmel Health Systems (Current affiliation GAC), Columbus, OH, USA.
Background And Purpose: In acute ischemic stroke, the amount of "local" CBF distal to the occlusion, i.e. all blood flow within a region whether supplied antegrade or delayed and dispersed through the collateral network, may contain valuable information regarding infarct growth rate and treatment response.
View Article and Find Full Text PDFPLoS Biol
January 2025
Department of Biophysics, University of Michigan, Ann Arbor, Michigan, United States of America.
As failure rates for traditional antimicrobial therapies escalate, recent focus has shifted to evolution-based therapies to slow resistance. Collateral sensitivity-the increased susceptibility to one drug associated with evolved resistance to a different drug-offers a potentially exploitable evolutionary constraint, but the manner in which collateral effects emerge over time is not well understood. Here, we use laboratory evolution in the opportunistic pathogen Enterococcus faecalis to phenotypically characterize collateral profiles through evolutionary time.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!