This report outlines a versatile strategy for synthesizing a diverse array of N-heterocycles. By the utilization of common olefins, this simple protocol facilitates their coupling with various bifunctional reagents. Furthermore, it can be integrated with C-H amination techniques to directly produce N-heterocycles in a multicomponent cascade coupling process. The unique bond disconnection logic employed in this process underscores its efficiency in achieving rapid simplification through cascade couplings.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.orglett.3c03690DOI Listing

Publication Analysis

Top Keywords

olefin difunctionalization
4
difunctionalization synthesis
4
synthesis tetrahydroisoquinoline
4
tetrahydroisoquinoline morpholine
4
morpholine piperazine
4
piperazine azepane
4
azepane report
4
report outlines
4
outlines versatile
4
versatile strategy
4

Similar Publications

In this work, a switchable synthesis of β-ketosulfone and α-chloroketone through a radical difunctionalization of alkenes is reported. The transformation works well under iron peroxo species/photoredox dual catalysis and an open-flask atmosphere, and the reaction is highlighted with good yields and a broad reaction scope. Mechanism studies show that the reaction is initiated by a formal [4 + 2] cyclization of the sulfonyl radical in a regioselective manner.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers have developed a new method for remote functionalization that uses a borenium ion as a catalyst instead of traditional transition metals, addressing issues like metal residue and catalyst poisoning.
  • The process allows for site-selective modification of molecules by enabling the "walking" of a boron group along a carbon chain, ultimately favoring the formation of α-borylation products.
  • This metal-free approach shows compatibility with various functional groups and can facilitate the synthesis of unique compounds, including those helpful in creating bioactive molecules.
View Article and Find Full Text PDF

Arylethylamines represent a privileged scaffold in pharmaceutical compounds and form the backbone of many medical drugs, including those used for treating neurological diseases and pain. Their biomedical significance has inspired new synthetic methods that rely on transition metal-catalyzed aminoarylation reaction to an alkene, often in conjunction with a photoredox catalyst or a photosensitizer, and guided by a directing or stabilizing group. Here, we introduce a simple and effective method for azidoarylation of unactivated alkenes under transition metal-free conditions.

View Article and Find Full Text PDF

A nickel-catalyzed intermolecular three-component 1,1-difunctionalization of unactivated alkenes with quinoxaline/naphthoquinone and arylboronic acids via organometallic-radical relay is developed. This efficient protocol provides a new method to access a variety of arylalkanes in moderate to good yields with a broad substrate scope and excellent functional group tolerance. The mechanistic studies provide insights into the mechanism and origin of chemo- and regioselectivity as well as confirm the generation of functionalized benzylic radicals.

View Article and Find Full Text PDF

The trifluoromethyl (-CF) group represents a highly prevalent functionality in pharmaceuticals. Over the past few decades, significant advances have been made in the development of synthetic methods for trifluoromethylation. In contrast, there are currently no metalloenzymes known to catalyze the formation of C(sp)-CF bonds.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!