Many pathogenic Gram-negative bacteria use repeats-in-toxin adhesins for colonization and biofilm formation. In the cholera agent , flagellar-regulated hemagglutinin A (FrhA) enables these functions. Using bioinformatic analysis, a sugar-binding domain was identified in FrhA adjacent to a domain of unknown function. AlphaFold2 indicated the boundaries of both domains to be slightly shorter than previously predicted and assisted in the recognition of the unknown domain as a split immunoglobulin-like fold that can assist in projecting the sugar-binding domain toward its target. The AlphaFold2-predicted structure is in excellent agreement with the molecular envelope obtained from small-angle X-ray scattering analysis of a recombinant construct spanning the sugar-binding and unknown domains. This two-domain construct was probed by glycan micro-array screening and showed binding to mammalian fucosylated glycans, some of which are characteristic erythrocyte markers and intestinal cell epitopes. Isothermal titration calorimetry further showed the construct-bound l-fucose with a of 21 µM. Strikingly, this recombinant protein construct bound and lysed erythrocytes in a concentration-dependent manner, and its hemolytic activity was blocked by the addition of l-fucose. A protein ortholog construct from was also produced and showed a similar glycan-binding pattern, binding affinity, erythrocyte-binding, and hemolytic activities. As demonstrated here with Hep-2 cells, fucose-based inhibitors of this sugar-binding domain can potentially be developed to block colonization by and other pathogenic bacteria that share this adhesin domain.IMPORTANCEThe bacterium, , which causes cholera, uses an adhesion protein to stick to human cells and begin the infection process. One part of this adhesin protein binds to a particular sugar, fucose, on the surface of the target cells. This binding can lead to colonization and killing of the cells by the bacteria. Adding l-fucose to the bacteria before they bind to the human cells can prevent attachment and has promise as a preventative drug to protect against cholera.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10865825 | PMC |
http://dx.doi.org/10.1128/mbio.02291-23 | DOI Listing |
Comp Biochem Physiol Part D Genomics Proteomics
December 2024
Key Laboratory of Plant Genetics and Molecular Breeding, Zhoukou Normal University, Zhoukou 466001, China; Henan Key Laboratory of Crop Molecular Breeding & Bioreactor, Zhoukou 466001, China. Electronic address:
Uridine diphosphate-glycosyltransferases (UGTs) are responsible for glycosylation by combining various small lipophilic molecules with sugars to produce water-soluble glycosides, which are crucial for the metabolism of plant secondary metabolites and detoxification in insects. This study presents a genome-wide analysis of the UGT gene family in the brown planthopper, Nilaparvata lugens, a destructive insect pest of rice in Asia. Based on the similarity to UGT homologs from other organisms, 20 putative NlUGT genes were identified in N.
View Article and Find Full Text PDFJ Biol Chem
November 2024
Department of Life Sciences, Imperial College London, London, United Kingdom. Electronic address:
A human lectin array has been developed to probe the interactions of innate immune receptors with pathogenic and commensal microorganisms. Following the successful introduction of a lectin array containing all of the cow C-type carbohydrate-recognition domains (CRDs), a human array described here contains the C-type CRDs as well as CRDs from other classes of sugar-binding receptors, including galectins, siglecs, R-type CRDs, ficolins, intelectins, and chitinase-like lectins. The array is constructed with CRDs modified with single-site biotin tags, ensuring that the sugar-binding sites in CRDs are displayed on a streptavidin-coated surface in a defined orientation and are accessible to the surfaces of microbes.
View Article and Find Full Text PDFGlycobiology
December 2024
Department of Life Sciences, Sir Ernst Chain Building, Imperial College London, Exhibition Road, London SW7 2AZ, United Kingdom.
Glycobiology
December 2024
Department of Life Sciences, Sir Ernst Chain Building, Imperial College, Exhibition Road, London SW7 2AZ, United Kingdom.
Biochem Biophys Res Commun
November 2024
Laboratory of Metabolic Science of Forest Plants and Microorganisms, Research Institute for Sustainable Humanosphere, Kyoto University, Gokasyo, Uji, Kyoto, 611-0011, Japan; Structural Energy Bioscience, Institute of Advanced Energy, Kyoto University, Gokasyo, Uji, Kyoto, 611-0011, Japan. Electronic address:
ß-Amylase, which catalyses the release of ß-anomeric maltose from the non-reducing end of starch, is widely used in the food industry. Increasing its enzyme activity through protein engineering might improve the efficiency of food processing. To obtain detailed structural information to assist rationale design, here the crystal structure of Bacillus cereus β-amylase (BCB) complexed with maltose was determined by molecular replacement and refined using anisotropic temperature factors to 1.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!