A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Radon Exposure, Clonal Hematopoiesis, and Stroke Susceptibility in the Women's Health Initiative. | LitMetric

Radon Exposure, Clonal Hematopoiesis, and Stroke Susceptibility in the Women's Health Initiative.

Neurology

From the Department of Epidemiology (K.M.A., J.M.C., S.-A.M.L., J.D.S., R.G., E.A.W.), Gillings School of Global Public Health, University of North Carolina, Chapel Hill; Brown University (S.F.B.), Providence, RI; Department of Population Health (G.G.S.), University of North Dakota School of Medicine & Health Sciences, Grand Forks; Department of Neurology (D.Y.H.), School of Medicine, University of North Carolina, Chapel Hill; Program in Public Health (J.R.M.), Stony Brook University, Stony Brook, NY; Division of Oncological Sciences (Z.Z.), Knight Cancer Institute, Oregon Health & Science University, Portland; Department of Cardiology (A.B.), Medstar Washington Hospital Center, Washington, DC; Department of Medicine (A.B.), Georgetown University, Washington, DC; Division of Hematology and Oncology (P.D.), Weill Cornell Medicine, New York; Department of Social Sciences and Health Policy (K.M.H.), Wake Forest University School of Medicine, Winston-Salem, NC; Cardiology Division (M.C.H.), Massachusetts General Hospital, Boston; Program in Medical and Population Genetics (M.C.H., P.N.), Broad Institute of Harvard and MIT, Cambridge, MA; Department of Pathology (S.J.), Stanford University School of Medicine, CA; Cardiovascular Research Center and Center for Genomic Medicine (P.N.), Massachusetts General Hospital, Boston; Department of Medicine (P.N.), Harvard Medical School, Boston; Division of Genetic Medicine (A.G.B.), Department of Medicine, Vanderbilt University Medical Center, Nashville, TN; Division of Public Health Sciences (C.K., A.P.R.), Fred Hutchinson Cancer Center, Seattle, WA; Department of Medicine (J.E.M.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Department of Epidemiology (A.P.R.), University of Washington, Seattle; and Department of Medicine (E.A.W.), School of Medicine, University of North Carolina, Chapel Hill.

Published: January 2024

AI Article Synopsis

  • The study investigates the potential link between radon exposure and clonal hematopoiesis of indeterminate potential (CHIP), which may increase the risk of blood cancers and heart diseases.
  • Researchers analyzed data from nearly 11,000 participants to assess the relationship between indoor radon levels and the presence of CHIP, noting varying risks based on radon concentration zones.
  • Results showed that higher radon exposure (in Zones 1 and 2) is associated with an increased risk of CHIP in individuals who have had ischemic strokes, whereas no significant risks were found in those with hemorrhagic strokes or those without stroke histories.

Article Abstract

Background And Objectives: Studies suggest that clonal hematopoiesis of indeterminate potential (CHIP) may increase risk of hematologic malignancy and cardiovascular disease, including stroke. However, few studies have investigated plausible environmental risk factors for CHIP such as radon, despite the climate-related increases in and documented infrequency of testing for this common indoor air pollutant.The purpose of this study was to estimate the risk of CHIP related to radon, an established environmental mutagen.

Methods: We linked geocoded addresses of 10,799 Women's Health Initiative Trans-Omics for Precision Medicine (WHI TOPMed) participants to US Environmental Protection Agency-predicted, county-level, indoor average screening radon concentrations, categorized as follows: Zone 1 (>4 pCi/L), Zone 2 (2-4 pCi/L), and Zone 3 (<2 pCi/L). We defined CHIP as the presence of one or more leukemogenic driver mutations with variant allele frequency >0.02. We identified prevalent and incident ischemic and hemorrhagic strokes; subtyped ischemic stroke using Trial of ORG 10172 in Acute Stroke Treatment (TOAST) criteria; and then estimated radon-related risk of CHIP as an odds ratio (OR) and 95% CI using multivariable-adjusted, design-weighted logistic regression stratified by age, race/ethnicity, smoking status, and stroke type/subtype.

Results: The percentages of participants with CHIP in Zones 1, 2, and 3 were 9.0%, 8.4%, and 7.7%, respectively ( = 0.06). Among participants with ischemic stroke, Zones 2 and 1 were associated with higher estimated risks of CHIP relative to Zone 3: 1.39 (1.15-1.68) and 1.46 (1.15-1.87), but not among participants with hemorrhagic stroke: 0.98 (0.68-1.40) and 1.03 (0.70-1.52), or without stroke: 1.04 (0.74-1.46) and 0.95 (0.63-1.42), respectively ( = 0.03). Corresponding estimates were particularly high among TOAST-subtyped cardioembolism: 1.78 (1.30-2.47) and 1.88 (1.31-2.72), or other ischemic etiologies: 1.37 (1.06-1.78) and 1.50 (1.11-2.04), but not small vessel occlusion: 1.05 (0.74-1.49) and 1.00 (0.68-1.47), respectively ( = 0.10). Observed patterns of association among strata were insensitive to attrition weighting, ancestry adjustment, prevalent stroke exclusion, separate analysis of driver mutations, and substitution with 3 alternative estimates of radon exposure.

Discussion: The robust elevation of radon-related risk of CHIP among postmenopausal women who develop incident cardioembolic stroke is consistent with a potential role of somatic genomic mutation in this societally burdensome form of cerebrovascular disease, although the mechanism has yet to be confirmed.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10870742PMC
http://dx.doi.org/10.1212/WNL.0000000000208055DOI Listing

Publication Analysis

Top Keywords

risk chip
12
stroke
10
clonal hematopoiesis
8
women's health
8
health initiative
8
chip radon
8
pci/l zone
8
ischemic stroke
8
radon-related risk
8
chip
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!