Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Natural language processing techniques are having an increasing impact on clinical care from patient, clinician, administrator, and research perspective. Among others are automated generation of clinical notes and discharge letters, medical term coding for billing, medical chatbots both for patients and clinicians, data enrichment in the identification of disease symptoms or diagnosis, cohort selection for clinical trial, and auditing purposes. In the review, an overview of the history in natural language processing techniques developed with brief technical background is presented. Subsequently, the review will discuss implementation strategies of natural language processing tools, thereby specifically focusing on large language models, and conclude with future opportunities in the application of such techniques in the field of cardiology.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10834163 | PMC |
http://dx.doi.org/10.1093/eurheartj/ehad838 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!