The all-terrain motility of lymphocytes in tissues and tissue-like gels is best described as amoeboid motility. For amoeboid motility, lymphocytes do not require specific biochemical or structural modifications to the surrounding extracellular matrix. Instead, they rely on changing shape and steric interactions with the microenvironment. However, the exact mechanism of amoeboid motility remains elusive. Here, we report that septins participate in amoeboid motility of T cells, enabling the formation of F-actin and α-actinin-rich cortical rings at the sites of cell cortex-indenting collisions with the extracellular matrix. Cortical rings compartmentalize cells into chains of spherical segments that are spatially conformed to the available lumens, forming transient "hourglass"-shaped steric locks onto the surrounding collagen fibers. The steric lock facilitates pressure-driven peristaltic propulsion of cytosolic content by individually contracting cell segments. Our results suggest that septins provide microenvironment-guided partitioning of actomyosin contractility and steric pivots required for amoeboid motility of T cells in tissue-like microenvironments.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1126/sciadv.adi1788 | DOI Listing |
Protoplasma
December 2024
Institute of Cytology, Russian Academy of Sciences, Saint Petersburg, 194064, Russia.
Rhizochromulina is a genus of unicellular dictyochophycean algae (Heterokontophyta), comprising a single species R. marina and numerous strains. Recently, we described the first arctic rhizochromuline-Rhizochromulina sp.
View Article and Find Full Text PDFMicrob Pathog
December 2024
Universidade Federal de São Paulo, Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Diadema, São Paulo, CEP 09972-270, Brazil; Universidade Estadual de Campinas, Instituto de Biologia, Campinas, CEP 13083-862, Brazil.
Myxosporeans are a diverse group of cnidarian endoparasites of aquatic animals, with more than 2600 described species. The genus Ceratomyxa includes some 270 species that are mostly coelozoic and infect the gall bladders of mainly marine fish. During our survey in Tapajós River in the Brazilian Amazon, two Ceratomyxa species were discovered in the gallbladders of the anostomid fishes Schyzodon fasciatus and Schyzodon vittatus.
View Article and Find Full Text PDFElife
December 2024
Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China.
Cell migration towards stiff substrates has been coined as durotaxis and implicated in development, wound healing, and cancer, where complex interplays between immune and non-immune cells are present. Compared to the emerging mechanisms underlying the strongly adhesive mesenchymal durotaxis, little is known about whether immune cells - migrating in amoeboid mode - could follow mechanical cues. Here, we develop an imaging-based confined migration device with a stiffness gradient.
View Article and Find Full Text PDFPLoS Comput Biol
December 2024
Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia.
Small GTPases of the Rho family play a central role in the regulation of cell motility by controlling the remodeling of the actin cytoskeleton. In the amoeboid cells of Dictyostelium discoideum, the active form of the Rho GTPase Rac1 regulates actin polymerases at the leading edge and actin filament bundling proteins at the posterior cortex of polarized cells. We monitored the spatiotemporal dynamics of Rac1 and its effector DGAP1 in vegetative amoebae using specific fluorescent probes.
View Article and Find Full Text PDFTissue Cell
December 2024
Department of Pharmacy, School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield HD1 3DH, United Kingdom. Electronic address:
Polysaccharides such as sodium alginate, pectin and gellan gum are widely used biomaterials, for their ability to easily form hydrogels in the presence of divalent metal ions, such as calcium - a process often cited as a mild crosslinking mechanism. However, when using these materials as substrates for tissue engineering, there is a lack of extensive studies that investigate the impact of elevated calcium concentrations on cell health and behaviour. In this study, we performed an in-depth exploration to understand the potential effects of raising extracellular CaCl on cell viability, proliferation, morphology and migration.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!