Gut - brain communications disorders in irritable bowel syndrome (IBS) are associated with intestinal microbiota composition, increased gut permeability, and psychosocial disturbances. Symptoms of IBS are difficult to medicate, and hence much research is being made into alternative approaches. This study assesses the potential of a treatment with pasteurized Akkermansia muciniphila for alleviating IBS-like symptoms in two mouse models of IBS with different etiologies. Two clinically relevant animal models were used to mimic IBS-like symptoms in C57BL6/J mice: the neonatal maternal separation (NMS) paradigm and the Citrobacter rodentium infection model. In both models, gut permeability, colonic sensitivity, fecal microbiota composition and colonic IL-22 expression were evaluated. The cognitive performance and emotional state of the animals were also assessed by several tests in the C. rodentium infection model. The neuromodulation ability of pasteurized A. muciniphila was assessed on primary neuronal cells from mice dorsal root ganglia using a ratiometric calcium imaging approach. The administration of pasteurized A. muciniphila significantly reduced colonic hypersensitivity in both IBS mouse models, accompanied by a reinforcement of the intestinal barrier function. Beneficial effects of pasteurized A. muciniphila treatment have also been observed on anxiety-like behavior and memory defects in the C. rodentium infection model. Finally, a neuroinhibitory effect exerted by pasteurized A. muciniphila was observed on neuronal cells stimulated with two algogenic substances such as capsaicin and inflammatory soup. Our findings demonstrate novel anti-hyperalgesic and neuroinhibitory properties of pasteurized A. muciniphila, which therefore may have beneficial effects in relieving pain and anxiety in subjects with IBS.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10766393PMC
http://dx.doi.org/10.1080/19490976.2023.2298026DOI Listing

Publication Analysis

Top Keywords

pasteurized muciniphila
20
rodentium infection
12
infection model
12
irritable bowel
8
microbiota composition
8
gut permeability
8
ibs-like symptoms
8
mouse models
8
neuronal cells
8
beneficial effects
8

Similar Publications

Akkermansia muciniphila inhibits jejunal lipid absorption and regulates jejunal core bacteria.

Microbiol Res

January 2025

Institutes of Biomedical Sciences, College of Life Sciences, Inner Mongolia University, Hohhot, China; The First Affiliated Hospital of Jinan University, Guangzhou, China; The Guangdong-Hong Kong-Macao Joint University Laboratory of Metabolic and Molecular Medicine, Jinan University, Guangzhou, China. Electronic address:

Insufficiency of Akkermansia muciniphila (Akk) has been implicated in the pathogenesis of metabolic diseases, and administration or restoration of Akk has ameliorated these disorders. Recently, Pasteurized Akk (PA-Akk) has been approved as a functional food. However, the impact of Akk on lipid absorption in the proximal intestine, which is directly exposed to orally administered Akk, remains largely unexplored.

View Article and Find Full Text PDF

Background: The spectrum of metabolic dysfunction-associated steatotic liver disease (MASLD) is highly prevalent, affecting 30% of the world's population, with a significant risk of hepatic and cardiometabolic complications. Different stages of MASLD are accompanied by distinct gut microbial profiles, and several microbial components have been implicated in MASLD pathophysiology. Indeed, earlier studies demonstrated that hepatic necroinflammation was reduced in individuals with MASLD after allogenic faecal microbiota transplantation (FMT) from healthy donors on a vegan diet.

View Article and Find Full Text PDF

Preeclampsia (PE) is a serious complication of pregnancy linked to endothelial dysfunction and an imbalance in the gut microbiota. While (AKK) has shown promise in alleviating PE symptoms, the use of live bacteria raises safety concerns. This study explored the potential of pasteurized (pAKK) as a safer alternative for treating PE, focusing on its effects on endothelial function and metabolic regulation.

View Article and Find Full Text PDF

() is a promising candidate bacterium for stress management due to its beneficial effects on the microbiota-gut-brain axis (MGBA). As a well-known mucin-degrading bacterium in the digestive tract, has demonstrated significant benefits for host physiology. Recent research highlights its potential in treating several neuropsychiatric disorders.

View Article and Find Full Text PDF

Background/objectives: Sarcopenia, a condition marked by muscle wasting due to aging or inactivity, severely affects older populations. We previously showed that pasteurized HB05 (HB05P), sourced from the breast milk of healthy Korean women, could mitigate muscle wasting in a dexamethasone-induced rat model. Here, we explored whether the oral administration of HB05P can enhance muscle strength and functionality in elderly individuals.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!