Understanding the physical breakdown and catechin bioaccessibility of third generation extruded snacks enriched with catechin using the human gastric simulator.

Food Funct

Department of Chemical and Bioprocess Engineering, Faculty of Engineering, Pontificia Universidad Católica de Chile, Macul 6904411, Chile.

Published: January 2024

The nutritional quality of third-generation snacks prepared from rice flour by extrusion can be improved by the addition of polyphenols such as catechins, which are known to be more stable at high temperatures. However, the extrusion parameters can impact the breakdown and release of bioactive compounds and decrease the catechin bioaccessibility. Accordingly, this study investigated the impact of different extrusion parameters, including different extrusion temperatures (110, 135, and 150 °C) and moisture content prior to extrusion (27 and 31%), on the breakdown and bioaccessibility of catechin-enriched snacks during dynamic digestion using the Human Gastric Simulator (HGS). The extrusion parameters did not significantly impact most measured variables by themselves, indicating that within the tested ranges, any of the processing conditions could be used to produce a product with similar digestive behavior. However, the interaction of extrusion parameters (temperature and moisture content) played a significant role in the snack behavior during digestion. For example, the combination of 27% moisture content and 150 °C extrusion temperature had higher catechin bioaccessibility and higher starch hydrolysis than the other treatments. Overall, these findings suggest that the processing conditions of third generation snacks enriched with catechin can be optimized within certain ranges with limited modifications in the digestive properties.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d3fo03857bDOI Listing

Publication Analysis

Top Keywords

extrusion parameters
16
catechin bioaccessibility
12
moisture content
12
third generation
8
snacks enriched
8
enriched catechin
8
human gastric
8
gastric simulator
8
extrusion
8
parameters impact
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!