Purpose: In this study, we aimed to compare blood flow changes in the optic nerve head (ONH) during horizontal ocular duction among normal, primary open-angle glaucoma (POAG), and normal-tension glaucoma (NTG) eyes.

Methods: In this cross-sectional study, we included 90 eyes from 90 participants (30 control eyes, 30 POAG eyes, and 30 NTG eyes). ONH blood flow was measured with laser speckle flowgraphy using an external fixation light to induce central gaze, abduction, and adduction at 30 degrees for each eye. The mean blur rate (MBR) of the entire ONH area (MA), vascular region (MV), and tissue region (MT), and the change ratio were analyzed. The change ratio was defined as abduction or adduction value/central gaze value.

Results: In the control group, MA significantly decreased during adduction (22.9 ± 3.7) compared with that during central gaze (23.6 ± 3.9, P < 0.05). In the POAG group, MA (adduction = 17.4 ± 3.8 and abduction = 17.3 ± 3.6) and MV (adduction = 37.9 ± 5.6 and abduction = 38.0 ± 5.6) significantly decreased during adduction and abduction compared with those during central gaze (18.0 ± 4.1 and 39.5 ± 6.3, respectively, P < 0.05). In the NTG group, MA significantly decreased during adduction (17.4 ± 4.2) compared with that during central gaze (18.1 ± 4.6) and abduction (18.1 ± 4.8, P < 0.05). The change ratio did not differ between the glaucoma and control groups.

Conclusions: ONH blood flow decreased during horizontal ocular duction regardless of normal or glaucoma states; however, the change ratio was comparable between the normal and glaucoma groups.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10768701PMC
http://dx.doi.org/10.1167/iovs.65.1.7DOI Listing

Publication Analysis

Top Keywords

blood flow
16
central gaze
16
change ratio
16
horizontal ocular
12
ocular duction
12
decreased adduction
12
compared central
12
changes optic
8
optic nerve
8
nerve head
8

Similar Publications

Fluid administration is widely used to treat hypotension in patients undergoing veno-venous extracorporeal membrane oxygenation (VV-ECMO). However, excessive fluid administration may lead to fluid overload can aggravate acute respiratory distress syndrome (ARDS) and increase patient mortality, predicting fluid responsiveness is of great significance for VV-ECMO patients. This prospective single-center study was conducted in a medical intensive care unit (ICU) and finally included 51 VV-ECMO patients with ARDS in the prone position (PP).

View Article and Find Full Text PDF

Turning attention to tumor-host interface and focus on the peritumoral heterogeneity of glioblastoma.

Nat Commun

December 2024

Cancer Center, Department of Neurosurgery, Zhejiang Provincial People's Hospital,Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China.

Approximately 90% of glioblastoma recurrences occur in the peritumoral brain zone (PBZ), while the spatial heterogeneity of the PBZ is not well studied. In this study, two PBZ tissues and one tumor tissue sample are obtained from each patient via preoperative imaging. We assess the microenvironment and the characteristics of infiltrating immune/tumor cells using various techniques.

View Article and Find Full Text PDF

Neuromorphic-enabled video-activated cell sorting.

Nat Commun

December 2024

State Key Laboratory of Precision Measurement Technology and Instrument, Department of Precision Instrument, Tsinghua University, Beijing, China.

Imaging flow cytometry allows image-activated cell sorting (IACS) with enhanced feature dimensions in cellular morphology, structure, and composition. However, existing IACS frameworks suffer from the challenges of 3D information loss and processing latency dilemma in real-time sorting operation. Herein, we establish a neuromorphic-enabled video-activated cell sorter (NEVACS) framework, designed to achieve high-dimensional spatiotemporal characterization content alongside high-throughput sorting of particles in wide field of view.

View Article and Find Full Text PDF

Multifaceted Immunomodulatory Nanocomplexes Target Neutrophilic-ROS Inflammation in Acute Lung Injury.

Adv Sci (Weinh)

December 2024

Department of Critical Care Medicine and Emergency, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China.

The sepsis-induced acute lung injury (ALI) still represents one of the leading causes of death in critically ill patients, underscoring the need for novel therapies. Excessive activation of immune cells and damage of reactive oxygen species (ROS) are the main factors that exacerbate lung injury. Here, the multifaceted immunomodulatory nanocomplexes targeting the proinflammatory neutrophilic activation and ROS damage are established.

View Article and Find Full Text PDF

Impact of blood flow restriction intensity on pain perception and muscle recovery post-eccentric exercise.

Clin Physiol Funct Imaging

January 2025

Faculty of Health Sciences, Division of Physiotherapy and Rehabilitation, Istanbul Okan University, Istanbul, Turkey.

Background: Delayed onset muscle soreness (DOMS) is a well-established phenomenon characterized by ultrastructural muscle damage that typically develops following unfamiliar or high-intensity exercise. DOMS manifests with a constellation of symptoms, including muscle tenderness, stiffness, edema, mechanical hyperalgesia, and a reduced range of joint motion. In recent years, the application of blood flow restriction (BFR) has garnered attention for its potential impact on DOMS.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!