Morphologies and magnetic properties of α-FeO nanoparticles calcined at different temperatures.

Phys Chem Chem Phys

National Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093, P. R. China.

Published: January 2024

Different morphologies and sizes of α-FeO were prepared by a coprecipitation method using polyvinylpyrrolidone as a dispersant. In the preparation process, homogeneous and dispersed nanoscale FeOOH particles were first obtained by the coprecipitation method, and then the FeOOH particles were calcined at high temperature to form α-FeO. The growth and aggregation of the α-FeO particles at different calcination temperatures resulted in α-FeO powders with diversiform morphologies (nanoscale microsphere, pinecone ellipsoidal, polyhedral, and quasi-spherical structures). By analyzing the SEM images, it was inferred that the polyhedral structure of α-FeO particles was formed by the accumulation of rhomboid sheet structures and high-temperature growth. In terms of the magnetic properties, the samples belonged to the class of canted antiferromagnetic materials, and the morphology, particle size, and crystallite size of the α-FeO particles were important factors affecting the coercivity. Among these, when the calcination temperature was increased from 700 °C to 800 °C, the growth rate of the particle size was significantly faster than that of the crystallite size, and the coercivity increased substantially from 1411 Oe to 2688 Oe.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d3cp04520jDOI Listing

Publication Analysis

Top Keywords

α-feo particles
12
magnetic properties
8
coprecipitation method
8
feooh particles
8
particle size
8
crystallite size
8
α-feo
7
particles
5
morphologies magnetic
4
properties α-feo
4

Similar Publications

Background: Extracellular vesicles (EVs) play a crucial role in intraspecies and interspecies communication, significantly influencing physiological and pathological processes. Outer membrane vesicles (OMVs) secreted by Gram-negative bacteria are rich in components from the parent cells and are important for bacterial communication, immune evasion, and pathogenic mechanisms. However, the extraction and purification of OMVs face numerous challenges due to their small size and heterogeneity.

View Article and Find Full Text PDF

Objectives: This study aimed to verify if composites containing dicalcium phosphate dihydrate particles (DCPD) are able to induce dentin remineralization in vitro. Additionally, the mechanical properties of the materials were tested.

Methods: Four composites with 50 vol% inorganic content and 1 BisGMA: 1 TEGDMA (mols) were prepared, with different DCPD:glass ratios (50:0, 40:10, 30:20 and 0:50).

View Article and Find Full Text PDF

Engineering immunity using metabolically active polymeric nanoparticles.

Trends Biotechnol

December 2024

Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA; Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA. Electronic address:

Immune system functions play crucial roles in both health and disease, and these functions are regulated by their metabolic programming. The field of immune engineering has emerged to develop therapeutic strategies, including polymeric nanoparticles (NPs), that can direct immune cell phenotype and function by directing immunometabolic changes. Precise control of bioenergetic processes may offer the opportunity to prevent undesired immune activity and improve disease-specific outcomes.

View Article and Find Full Text PDF

The structure and active components of the filling material play a critical role in the contamination remediation performance of permeable reactive barriers. However, current methods lack a comprehensive understanding of the structural evolution and long-term performance of these materials during remediation processes. This study utilizes column experiments combined with spectral induced polarization (SIP) monitoring to investigate the effectiveness of zero-valent iron (ZVI), activated carbon (AC), and their composite with sand in removing Cr(VI).

View Article and Find Full Text PDF

Deciphering the key role of biofilm and mechanisms in high-strength nitrogen removal within the anammox coupled partial S-driven autotrophic denitrification system.

Bioresour Technol

December 2024

Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, 210094, China; Engineering Research Centre of Chemical Pollution Control, Ministry of Education, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, 210094, China. Electronic address:

Anammox coupled partial S-driven autotrophic denitrification (PSAD) technology represents an innovative approach for removing nitrogen from wastewater. The research highlighted the crucial role of biofilm on sulfur particles in the nitrogen removal process. Further analysis revealed that sulfur-oxidizing bacteria (SOB) are primarily distributed in the inner layer of the biofilm, while anammox bacteria (AnAOB) are relatively evenly distributed in inner and outer layers, with Thiobacillus and Candidatus Brocadia being the dominant species, respectively.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!