Heterogeneity of the tumor microenvironment (TME) is primarily responsible for ineffective tumor treatment and uncontrolled tumor progression. Pyroptosis-based immunogenic cell death (ICD) therapy is an ideal strategy to overcome TME heterogeneity and obtain a satisfactory antitumor effect. However, the efficiency of current pyroptosis therapeutics, which mainly depends on a single endogenous or exogenous stimulus, is limited by the intrinsic pathological features of malignant cells. Thus, it is necessary to develop a synergistic strategy with a high tumor specificity and modulability. Herein, a synergistic nanoplatform is constructed by combining a neutrophil camouflaging shell and a self-synergistic reactive oxygen species (ROS) supplier-loaded polymer. The covered neutrophil membranes endow the nanoplatform with stealthy properties and facilitate sufficient tumor accumulation. Under laser irradiation, the photosensitizer (indocyanine green) exogenously triggers ROS generation and converts the laser irradiation into heat to upregulate NAD(P)H:quinone oxidoreductase 1, which further catalyzes β-Lapachone to self-produce sufficient endogenous ROS, resulting in amplified ICD outcomes. The results confirm that the continuously amplified ROS production not only eliminates the primary tumor but also concurrently enhances gasdermin E-mediated pyroptosis, initiates an ICD cascade, re-educates the heterogeneous TME, and promotes a systemic immune response to suppress distant tumors. Overall, this self-synergistic nanoplatform provides an efficient and durable method for redesigning the immune system for targeted tumor inhibition.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsnano.3c09499DOI Listing

Publication Analysis

Top Keywords

self-synergistic nanoplatform
8
pyroptosis-based immunogenic
8
immunogenic cell
8
cell death
8
tumor
8
targeted tumor
8
laser irradiation
8
advancing precision
4
precision controllable
4
controllable self-synergistic
4

Similar Publications

Heterogeneity of the tumor microenvironment (TME) is primarily responsible for ineffective tumor treatment and uncontrolled tumor progression. Pyroptosis-based immunogenic cell death (ICD) therapy is an ideal strategy to overcome TME heterogeneity and obtain a satisfactory antitumor effect. However, the efficiency of current pyroptosis therapeutics, which mainly depends on a single endogenous or exogenous stimulus, is limited by the intrinsic pathological features of malignant cells.

View Article and Find Full Text PDF

Enhanced ROS-Boosted Phototherapy against Pancreatic Cancer Nrf2-Mediated Stress-Defense Pathway Suppression and Ferroptosis Induction.

ACS Appl Mater Interfaces

February 2022

Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China.

oxygen generation is the most common strategy to boost reactive oxygen species (ROS) for enhancing the efficacy of phototherapy in cancer, including photodynamic therapy (PDT) and photothermal therapy (PTT). However, hyperoxidation or hyperthermia often triggers stress-defense pathways and promotes tumor cell survival, thus severely limiting the therapeutic efficacy. To overcome the tumor hypoxia and thermal resistance existing in phototherapy, we constructed a self-synergistic nanoplatform for tumors by incorporating brusatol, a nuclear factor erythroid 2-related factor (Nrf2) inhibitor, into the silica nanonetwork.

View Article and Find Full Text PDF

Tumor targeted self-synergistic nanoplatforms for arsenic-sensitized photodynamic therapy.

Acta Biomater

November 2020

The Fifth Affiliated Hospital, Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, P. R. China. Electronic address:

Development of antitumor agents with high efficiency and low toxicity is one of the most important goals for biomedical research. However, most traditional therapeutic strategies were limited due to their non-specificity and abnormal tumor microenvironments, causing a poor therapeutic efficiency and severe side effects. In this paper, a tumor targeted self-synergistic nanoplatform (designated as PAO@PCN@HA) was developed for chemotherapy sensitized photodynamic therapy (PDT) against hypoxic tumors.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!