Heavy-metal-free III-V colloidal quantum dots (CQDs) are promising materials for solution-processed short-wave infrared (SWIR) photodetectors. Recent progress in the synthesis of indium antimonide (InSb) CQDs with sizes smaller than the Bohr exciton radius enables quantum-size effect tuning of the band gap. However, it has been challenging to achieve uniform InSb CQDs with band gaps below 0.9 eV, as well as to control the surface chemistry of these large-diameter CQDs. This has, to date, limited the development of InSb CQD photodetectors that are sensitive to 1400 nm light. Here we adopt solvent engineering to facilitate a diffusion-limited growth regime, leading to uniform CQDs with a band gap of 0.89 eV. We then develop a CQD surface reconstruction strategy that employs a dicarboxylic acid to selectively remove the native In/Sb oxides, and enables a carboxylate-halide co-passivation with the subsequent halide ligand exchange. We find that this strategy reduces trap density by half compared to controls, and enables electronic coupling among CQDs. Photodetectors made using the tailored CQDs achieve an external quantum efficiency of 25 % at 1400 nm, the highest among III-V CQD photodetectors in this spectral region.

Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.202316733DOI Listing

Publication Analysis

Top Keywords

indium antimonide
8
colloidal quantum
8
quantum dots
8
short-wave infrared
8
insb cqds
8
band gap
8
cqds band
8
cqd photodetectors
8
cqds
7
photodetectors
5

Similar Publications

Versatile Method of Engineering the Band Alignment and the Electron Wavefunction Hybridization of Hybrid Quantum Devices.

Adv Mater

September 2024

Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China.

Hybrid devices that combine superconductors (S) and semiconductors (Sm) have attracted great attention due to the integration of the properties of both materials, which relies on the interface details and the resulting coupling strength and wavefunction hybridization. However, until now, none of the experiments have reported good control of the band alignment of the interface, as well as its tunability to the coupling and hybridization. Here, the interface is modified by inducing specific argon milling while maintaining its high quality, e.

View Article and Find Full Text PDF

Stemless InSb nanowire networks and nanoflakes grown on InP.

Nanotechnology

July 2024

Applied Physics and Science Education Department, Eindhoven University of Technology, 5600 MB, Eindhoven, The Netherlands.

Among the experimental realization of fault-tolerant topological circuits are interconnecting nanowires with minimal disorder. Out-of-plane indium antimonide (InSb) nanowire networks formed by merging are potential candidates. Yet, their growth requires a foreign material stem usually made of InP-InAs.

View Article and Find Full Text PDF

Active adjustable terahertz multifunctional devices are crucial for the application of terahertz technology. In this paper, we propose a composite metasurface structure based on an indium antimonide metal octagonal pattern, which achieves different functional switching by controlling the phase state of indium antimonide material under different ambient temperatures. When indium antimonide exhibits in the dielectric state, by stacking and encoding the unit cell, the designed metasurface has the functions of two-beam splitting beam superposition, vortex beam and quarter beam superposition, and dual vortex beam superposition for circularly polarized and linearly polarized wave incidence.

View Article and Find Full Text PDF

Van der Waals Epitaxial Growth of Ultrathin Indium Antimonide on Arbitrary Substrates through Low-Thermal Budget.

Adv Mater

July 2024

Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education and School of Physics and Technology, Wuhan University, Wuhan, 430072, China.

III-V semiconductors possess high mobility, high frequency response, and detection sensitivity, making them potentially attractive for beyond-silicon electronics applications. However, the traditional heteroepitaxy of III-V semiconductors is impeded by a significant lattice mismatch and the necessity for extreme vacuum and high temperature conditions, thereby impeding their in situ compatibility with flexible substrates and silicon-based circuits. In this study, a novel approach is presented for fabricating ultrathin InSb single-crystal nanosheets on arbitrary substrates with a thickness as thin as 2.

View Article and Find Full Text PDF

While the role and manifestations of the localized surface plasmon resonances (LSPRs) in anomalous scattering, like superscattering and invisibility, are quite well explored, the existence, appearance, and possible contribution of localized epsilon-near-zero (ENZ) resonances still invoke careful exploration. In this paper, that is done along with a comparison of the resonances of two types in the case of thin-wall cylinders made of lossy and loss-compensated dispersive materials. It is shown that the localized ENZ resonances exist and appear very close to the zero-permittivity regime, i.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!