Background: Methylphenidate (MPH) abuse has been criticized for its role in neurodegeneration. Also, a high risk of seizure was reported in the first month of MPH treatment. Topiramate, a broad-spectrum Antiepileptic Drug (AED), has been used as a neuroprotective agent in both aforementioned complications. Nanotechnology is introduced to increase desirable neurological treatment with minimum side effects. We aimed to investigate the potential neuroprotective activity of topiramate loaded on nanoparticles.
Methods And Results: MTT assay was performed to evaluate the cellular cytotoxicity of Mesoporous Silica Nanoparticles (MSN). Male rats were randomly divided into eight groups. Rats received an intraperitoneal (i.p) MPH (10 mg/kg) injection and a daily oral dose of topiramate (TPM, 30 mg/kg), MSN with Zn core (10 and 30 mg/kg), and MSN with Cu core (10 and 30 mg/kg) for three weeks. On day 21, a seizure was induced by a single injection of pentylenetetrazole (PTZ) to evaluate the protective effects of TPM-loaded nanoparticles on seizure latency and duration following MPH-induced neurotoxicity. Moreover, the hippocampal content of tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), malondialdehyde (MDA), and the anti-oxidant enzymes (SOD, GPx, and GR) activities were assessed. Also, BAX and Bcl-2 as two main apoptotic markers were evaluated.
Results: MPH neurotoxicity was observed as a raised duration and reduced latency in PTZ-induced seizure. However, TPM-loaded MSN with Zn species (NE) treatment reduced the duration and improved the latency time. Also, NE and, somewhat, TPM-loaded MSN with Cu species (NM) administration reduced inflammatory cytokines, MDA, and Bax levels and increased activities in the rat hippocampus.
Conclusion: TPM-loaded nanoparticles could be used as neuroprotective agents against MPH-induced neurodegeneration by improving seizure parameters and reducing inflammatory, oxidant, and apoptotic factors.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11033-023-09011-1 | DOI Listing |
J Dent
December 2024
Department of Pediatric Dentistry and Orthodontics, School of Dentistry, Universidade Federal do Rio de Janeiro (UFRJ). Rodolpho Paulo Rocco, 325, Rio de Janeiro, RJ, Brazil. ZIP Code: 21941-617. Electronic address:
Objectives: To identify and map the literature on the current state of pH-triggered strategies for resin-based materials used in direct restorative dentistry, focusing on innovative compounds, their incorporation and evaluation methods, and the main outcomes.
Data And Sources: Through a search across PubMed, Scopus, Embase, Web of Science, LILACS, Cochrane Library databases, and Google Scholar, this review identified studies pertinent to pH-responsive dental materials, excluding resin-modified glass ionomer cements.
Study Selection: From the 981 records identified, 19 in vitro studies were included, concentrating on resin-based composite resins (50%), dentin adhesives (25%), and sealants (25%).
Colloids Surf B Biointerfaces
December 2024
Department of Ultrasonography, the Fourth Affiliated Hospital of Harbin Medical University, Harbin, China. Electronic address:
Hydrogen sulfide (HS) shows promise in treating myocardial ischemia-reperfusion injury (MIRI), but the challenge of controlled and sustained release hinders its clinical utility. In this study, we developed a platelet membrane-encapsulated mesoporous silica nanoparticle loaded with the HS donor diallyl trisulfide (PM-MSN-DATS). PM-MSN-DATS demonstrated optimal encapsulation efficiency and drug-loading content.
View Article and Find Full Text PDFBMC Oral Health
December 2024
Department of Chemistry, College of Science, Kuwait University, Safat, P.O. Box 5969, Kwait City, 13060, Kuwait.
Int J Biol Macromol
December 2024
School of Chemical Engineering and Technology, Hebei University of Technology, 5340 Xiping Rd., Tianjin 300130, China. Electronic address:
The synthesis of chiral amines is of critical importance but still challenging. Here, we present a self-sufficient and reusable dual-enzyme nanoreactor for chiral amine synthesis, featuring Z-mediated site-specific immobilization of amine dehydrogenase (AmDH) and glucose dehydrogenase (GDH) onto mesoporous silica nanoflowers (MSN). Molecular dynamics simulations revealed that the Z tag was bound to MSN via electrostatic interactions, thus maintaining the fusion enzyme's active pocket accessibility and improving its catalytic performance.
View Article and Find Full Text PDFBiomaterials
December 2024
School of Pharmacy, Key Laboratory of Smart Drug Delivery (Ministry of Education), Fudan University, Shanghai, 201203, China. Electronic address:
This study aimed to address the challenges associated with the low oral bioavailability and the necessity for frequent dosing of breviscapine (BRE), a mainstream drug in the treatment of cardiovascular and cerebrovascular diseases. The poor solubility and permeability of BRE in the gastrointestinal tract were identified as significant barriers to effective drug absorption, thereby impacting therapeutic efficacy and patient compliance. To enhance the gastrointestinal absorption of BRE, particles loaded with BRE were engineered utilizing Cremophor EL (CrEL), an absorption enhancer, in conjunction with mesoporous silica, a biocompatible drug delivery vector, formulating mesoporous silica particles loaded with BRE and CrEL (BRE-CrEL@SiO).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!