Pediatric patients who undergo surgery for long-segment congenital tracheal stenosis (LSCTS) have suboptimal outcomes and postsurgical complications. To address this, we propose a biosynthetic graft comprising (1) a porcine small intestinal submucosa extracellular matrix (SIS-ECM) patch for tracheal repair, and (2) a resorbable polymeric exostent for biomechanical support. The SIS-ECM patch was evaluated in vivo in an ovine trachea model over an 8 month period. Concurrently, the biosynthetic graft was evaluated in a benchtop lamb trachea model for biomechanical stability. In vivo results show that SIS-ECM performs better than bovine pericardium (control) by preventing granulation tissue/restenosis, restoring tracheal architecture, blood vessels, matrix components, pseudostratified columnar and stratified epithelium, ciliary structures, mucin production, and goblet cells. In vitro tests show that the biosynthetic graft can provide the desired axial and flexural stability, and biomechanical function approaching that of native trachea. These results encourage future studies to evaluate safety and efficacy, including biomechanics and collapse risk, biodegradation, and in vivo response enabling a stable long-term tracheal repair option for pediatric patients with LSCTS and other tracheal defects.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11139240PMC
http://dx.doi.org/10.1097/MAT.0000000000002130DOI Listing

Publication Analysis

Top Keywords

biosynthetic graft
16
tracheal stenosis
8
pediatric patients
8
sis-ecm patch
8
tracheal repair
8
trachea model
8
tracheal
6
composite biosynthetic
4
graft
4
graft repair
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!