A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Activation of endogenous glucocorticoids by HSD11B1 inhibits the antitumor immune response in renal cancer. | LitMetric

AI Article Synopsis

  • Scientists are looking for better ways to treat cancer using immune therapies, which help the body's own defenses fight the disease.
  • They found that a specific enzyme, HSD11B1, in kidney tumors is linked to worse treatment results because it prevents the immune system from working well.
  • Blocking this enzyme improved the effectiveness of a popular cancer therapy, boosting the immune response and helping mice survive longer after treatment.

Article Abstract

Although immune-based therapies have revolutionized the management of cancer, novel approaches are urgently needed to improve their outcome. We investigated the role of endogenous steroids in the resistance to cancer immunotherapy, as these have strong immunomodulatory functions. Using a publicly available database, we found that the intratumoral expression of 11 beta-hydroxysteroid dehydrogenase type 1 (), which regenerates inactive glucocorticoids into active glucocorticoids, was associated with poor clinical outcome and correlated with immunosuppressive gene signatures in patients with renal cell carcinoma (RCC). HSD11B1 was mainly expressed in tumor-infiltrating immune myeloid cells as seen by immunohistochemistry in RCC patient samples. Using peripheral blood mononuclear cells from healthy donors or immune cells isolated from the tumor of RCC patients, we showed that the pharmacological inhibition of HSD11B1 improved the response to the immune checkpoint inhibitor anti-PD-1. In a subcutaneous mouse model of renal cancer, the combination of an HSD11B1 inhibitor with anti-PD-1 treatment increased the proportion of tumor-infiltrating dendritic cells. In an intrarenal mouse tumor model, HSD11B1 inhibition increased the survival of mice treated with anti-PD-1. In addition, inhibition of HSD11B1 sensitized renal tumors in mice to immunotherapy with resiquimod, a Toll-like receptor 7 agonist. Mechanistically, we demonstrated that HSD11B1 inhibition combined with resiquimod increased T cell-mediated cytotoxicity to tumor cells by stimulating the antigen-presenting capacity of dendritic cells. In conclusion, these results support the use of HSD11B1 inhibitors to improve the outcome of immunotherapy in renal cancer and highlight the role of the endogenous glucocorticoid metabolism in the efficacy of immunotherapy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10761155PMC
http://dx.doi.org/10.1080/2162402X.2023.2286820DOI Listing

Publication Analysis

Top Keywords

renal cancer
12
hsd11b1
8
improve outcome
8
role endogenous
8
inhibition hsd11b1
8
inhibitor anti-pd-1
8
dendritic cells
8
hsd11b1 inhibition
8
cells
6
renal
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!