Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Zero-valent iron (ZVI) has been extensively studied for its efficacy in removing heavy metals, nitrate, and chlorinated organic compounds from contaminated water. However, its limited effectiveness due to rapid passivation and poor selectivity is prompting for alternative solutions, such as the use of aluminium alloys. In this study, the efficacy of five distinct aluminium alloys, namely Al-Mg, Al-Fe, Al-Cu, and Al-Ni, each comprising 50 % Al by mass at a concentration of 10 g/L, was assessed using copper, nitrate and trichloromethane (TCM) as model contaminants. Results show that chemical pollutants reacted immediately with Al-Mg. On the contrary, the remaining three alloys exhibited a delay of 24 h before demonstrating significant reactivity. Remarkably, Al-Mg alloy reduced nitrate exclusively to ammonium, indicating minimal preference for nitrate reduction to N. In contrast, the Al-Cu, Al-Ni, and Al-Fe alloys exhibited N selectivity of 3 %, 5 %, and 19 %, respectively. The removal efficiency of copper, nitrate and TCM reached 99 % within 24 h, 95 % within 48h and 48 % within 48h, respectively. Noteworthy findings included the correlation between Fe concentration within the Al-Fe alloy and an increased N selectivity from 9.3 % to 24.1 %. This resulted in an increase of Fe concentration from 10 % to 58 % albeit with a concurrent reduction in reactivity. Cu removal by Al-Fe alloy occurred via direct electron transfer, while the removal of nitrate and TCM was facilitated by atomic hydrogen generated by the alloy's hydrolysis. Intriguingly, nitrate and TCM suppressed Cu reduction, whereas Cu improved nitrate reduction and TCM degradation. These findings demonstrate the great potential of Al-Mg and Al-Fe alloys as highly efficient agents for water remediation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10758792 | PMC |
http://dx.doi.org/10.1016/j.heliyon.2023.e23422 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!