Breast cancer (BC) is the most prevalent malignancy among women worldwide. Mounting evidence suggests that PANoptosis participates in cancer development and therapy. However, the role of PANoptosis in BC remains unclear. In this study, we identified ten PANoptosis-related genes using Cox regression analysis, random forest (RF) algorithm and least absolute shrinkage and selection operator (LASSO) algorithm. A PANoptosis-related score (PRS) was calculated based on the coefficient of LASSO. Notably, we divided the patients into high- and low-risk groups according to the PRS and revealed a negative correlation between PRS and overall survival. Next, a nomogram model was constructed and validated to improve the clinical application of PRS. Functional enrichment analyses and the Bayesian network demonstrated that differentially expressed genes between high- and low-risk groups were mainly enriched in immune-related pathways. Besides, we found significant differences in tumor mutation burden and tumor immune microenvironment between patients in these two groups using bulk-RNA and single-cell RNA sequencing data. Furthermore, charged multivesicular body protein 2B (CHMP2B) was identified as the hub gene by combining LASSO, weighted gene co-expression network analysis, RF and eXtreme Gradient Boosting. Importantly, using immunohistochemistry analysis based on our tissue microarray, we found that CHMP2B was highly expressed in tumor tissue, and CD4 and CD8 were more likely to be positive in the CHMP2B-negative group. Survival analyses revealed that CHMP2B adversely impacted the survival of BC patients. In conclusion, we not only constructed a highly accurate predictive model based on PRS, but also revealed the importance of PANoptosis-related gene signature in the modulation of the tumor microenvironment and drug sensitivity in BC.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10758028 | PMC |
http://dx.doi.org/10.7150/jca.90113 | DOI Listing |
Sci Rep
January 2025
Department of Gastroenterology, The Third Xiangya Hospital, Central South University, 138 Tongzipo Road, Changsha, 410013, Hunan, China.
PANoptosis is one of several modes of programmed cell death (PCD) and plays an important role in many inflammatory and immune diseases. The role of PANoptosis in inflammatory bowel disease (IBD) is currently unknown. Differentially expressed PANoptosis-related genes (DE-PRGs) were identified, and pathway enrichment analyses were performed.
View Article and Find Full Text PDFEcotoxicol Environ Saf
January 2025
Department of Radiation Oncology, Guangzhou Institute of Cancer Research, the Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou, China. Electronic address:
PANoptosis is a newly discovered complex programmed cell death (PCD) form. In the field of cancer research, PANoptosis is involved in multiple cell death pathways that affect tumor cell survival, proliferation, and response to treatment, serving as an innovative strategy for cancer therapy. Endocrine-disrupting chemicals (EDCs) impact the endocrine system, including cancer.
View Article and Find Full Text PDFJ Cancer
January 2025
Department of Pathology, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210000, China.
J Inflamm Res
December 2024
Department of Traumatology, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing, 40014, People's Republic of China.
Purpose: Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive lung disease. PANoptosis, a unique inflammatory programmed cell death, it manifests as the simultaneous activation of signaling markers for pyroptosis, apoptosis, and necroptosis. However, research on the role of PANoptosis in the development of IPF is currently limited.
View Article and Find Full Text PDFFront Immunol
December 2024
Department of Ophthalmology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
Background: Diabetic retinopathy (DR) is a major complication of diabetes, leading to severe vision impairment. Understanding the molecular mechanisms, particularly PANoptosis, underlying DR is crucial for identifying potential biomarkers and therapeutic targets. This study aims to identify differentially expressed PANoptosis-related genes (DE-PRGs) in DR, offering insights into the disease's pathogenesis and potential diagnostic tools.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!