Sounding Out the Blood-Brain Barrier.

N Engl J Med

From Sunnybrook Research Institute and the Department of Medical Biophysics and the Institute of Biomedical Engineering, University of Toronto - both in Toronto.

Published: January 2024

Download full-text PDF

Source
http://dx.doi.org/10.1056/NEJMe2311358DOI Listing

Publication Analysis

Top Keywords

sounding blood-brain
4
blood-brain barrier
4
sounding
1
barrier
1

Similar Publications

Delivery of drugs through the blood-brain barrier: need for trials.

Lancet Neurol

January 2025

Geriatric Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA; Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA.

View Article and Find Full Text PDF

Although low-intensity focused ultrasound (LiFUS) with microbubbles is used to temporally open the blood-brain barrier (BBB), the underlying mechanism is not fully understood. This study aimed to analyze BBB-related alterations in the brain microenvironment after LiFUS, with a focus on the involvement of the purinergic P ×  receptor. Sprague-Dawley rats were sonicated with LiFUS at 0.

View Article and Find Full Text PDF

Characterization of focused ultrasound blood-brain barrier disruption effect on inflammation as a function of treatment parameters.

Biomed Pharmacother

January 2025

Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States. Electronic address:

The technology of focused ultrasound-mediated disruption of the blood-brain barrier (FUS-BBB opening) has now been used in over 20 Phase 1 clinical trials to validate the safety and feasibility of BBB opening for drug delivery in patients with brain tumors and neurodegenerative diseases. The primary treatment parameters, FUS intensity and microbubble dose, are chosen to balance sufficient BBB disruption to achieve drug delivery against potential acute vessel damage leading to microhemorrhage. However, other safety considerations due to second order effects caused by BBB disruption, such as inflammation and alteration of neurovascular function, are only beginning to be understood.

View Article and Find Full Text PDF

A comparative study of experimental and simulated ultrasound beam propagation through cranial bones.

Phys Med Biol

January 2025

Department of Medical Physics and Biomedical Engineering, University College London, London WC1E 6BT, United Kingdom.

Transcranial ultrasound is used in a variety of treatments, including neuromodulation, opening the blood-brain barrier, and high intensity focused ultrasound therapies. To ensure safety and efficacy of these treatments, numerical simulations of the ultrasound field within the brain are used for treatment planning and evaluation. This study investigates the accuracy of numerical modelling of the propagation of focused ultrasound through cranial bones.

View Article and Find Full Text PDF
Article Synopsis
  • Ultrasound combined with microbubble technology effectively opens the blood-brain barrier, allowing targeted drug delivery, but the underlying mechanisms, particularly regarding calcium signaling, need further exploration.
  • Research showed that microbubbles create strong calcium responses and cell poration, while integrin-targeted microbeads lead to temporary calcium changes without damaging the cell membrane, highlighting different bioeffects in brain endothelial cells.
  • The study also found that both microbubbles and microbeads enhance the permeability of endothelial cells for larger molecules, indicating potential improvements in drug delivery methods through better understanding of calcium signaling and cell junction dynamics.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!