AI Article Synopsis

  • Monolayer transition metal dichalcogenides (TMDs) are gaining interest for optoelectronic applications due to their direct band gap and high quantum yield, but face challenges like low external quantum efficiencies caused by non-radiative charged excitons.
  • This study demonstrates electrically confined electroluminescence (EL) of neutral excitons in tungsten diselenide (WSe) light-emitting transistors (LETs) by using a local graphene gate to balance electron and hole injection.
  • The balanced injection leads to a strong EL with an external quantum efficiency (EQE) of approximately 8.2% at room temperature, showcasing a method to enhance EQE in 2D light-emitting devices and

Article Abstract

Monolayer transition metal dichalcogenides (TMDs) have drawn significant attention for their potential in optoelectronic applications due to their direct band gap and exceptional quantum yield. However, TMD-based light-emitting devices have shown low external quantum efficiencies as imbalanced free carrier injection often leads to the formation of non-radiative charged excitons, limiting practical applications. Here, electrically confined electroluminescence (EL) of neutral excitons in tungsten diselenide (WSe) light-emitting transistors (LETs) based on the van der Waals heterostructure is demonstrated. The WSe channel is locally doped to simultaneously inject electrons and holes to the 1D region by a local graphene gate. At balanced concentrations of injected electrons and holes, the WSe LETs exhibit strong EL with a high external quantum efficiency (EQE) of ≈8.2 % at room temperature. These experimental and theoretical results consistently show that the enhanced EQE could be attributed to dominant exciton emission confined at the 1D region while expelling charged excitons from the active area by precise control of external electric fields. This work shows a promising approach to enhancing the EQE of 2D light-emitting transistors and modulating the recombination of exciton complexes for excitonic devices.

Download full-text PDF

Source
http://dx.doi.org/10.1002/adma.202310498DOI Listing

Publication Analysis

Top Keywords

light-emitting transistors
12
electrically confined
8
confined electroluminescence
8
electroluminescence neutral
8
neutral excitons
8
wse light-emitting
8
external quantum
8
charged excitons
8
electrons holes
8
excitons
4

Similar Publications

High Mobility Emissive Organic Semiconductors for Optoelectronic Devices.

J Am Chem Soc

January 2025

Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University and Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China.

High mobility emissive organic semiconductors (HMEOSCs) are a kind of unique semiconducting material that simultaneously integrates high charge carrier mobility and strong emission features, which are not only crucial for overcoming the performance bottlenecks of current organic optoelectronic devices but also important for constructing high-density integrated devices/circuits for potential smart display technologies and electrically pumped organic lasers. However, the development of HMEOSCs is facing great challenges due to the mutually exclusive requirements of molecular structures and packing modes between high charge carrier mobility and strong solid-state emission. Encouragingly, considerable advances on HMEOSCs have been made with continuous efforts, and the successful integration of these two properties within individual organic semiconductors currently presents a promising research direction in organic electronics.

View Article and Find Full Text PDF

Organic semiconducting polymers play a pivotal role in the development of field-effect transistors (OFETs) and organic light-emitting diodes (OLEDs), owing to their cost-effectiveness, structural versatility, and solution processability. However, achieving polymers with both high charge carrier mobility (μ) and photoluminescence (PL) quantum yield (Φ) remains a challenge. In this work, we present the design and synthesis of a novel donor-acceptor π-conjugated polymer, TTIF-BT, featuring a di-Thioeno[3,2-b] ThioenoIndeno[1,2-b] Fluorene (TTIF) backbone as the donor component.

View Article and Find Full Text PDF

Wide-bandgap semiconductors (WBGS) with energy bandgaps larger than 3.4 eV for GaN and 3.2 eV for SiC have gained attention for their superior electrical and thermal properties, which enable high-power, high-frequency, and harsh-environment devices beyond the capabilities of conventional semiconductors.

View Article and Find Full Text PDF

Thermally Activated Delayed Fluorescence in B,N-Substituted Tetracene Derivatives: A Theoretical Pathway to Enhanced OLED Materials.

J Phys Chem A

January 2025

Departamento de Química, Instituto Tecnológico de Aeronáutica, São José dos Campos, 12228-900 São Paulo, Brazil.

Polycyclic aromatic hydrocarbons (PAHs) exhibit intriguing characteristics that position them as promising candidates for advancements in organic semiconductor technologies. Notably, tetracene finds substantial utility in Electronics due to its application in organic light-emitting diodes (OLEDs) and organic field-effect transistors (OFETs). The strategic introduction of an isoelectronic boron-nitrogen (B,N) pair to replace a carbon-carbon pair in acenes introduces changes in the electronic structure, allowing for the controlled modulation of diradical characteristics.

View Article and Find Full Text PDF

Recent advances in mass transfer technology are expected to bring next-generation micro light-emitting diodes (µLED) displays into reality, although reliable integration of the active-matrix backplane with the transferred µLEDs remains as a challenge. Here, the µLED display technology is innovated by demonstrating pixel circuit-integrated micro-LEDs (PIMLEDs) and integrating them onto a transparent glass substrate. The PIMLED comprises of low-temperature poly-silicon transistors and GaN µLED.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!