Surface Reconstructions in II-VI Quantum Dots.

ACS Nano

BCMaterials, Basque Center for Materials, Applications, and Nanostructures, UPV/EHU Science Park, Leioa 48940, Spain.

Published: January 2024

Although density functional theory (DFT) calculations have been crucial in our understanding of colloidal quantum dots (QDs), simulations are commonly carried out on QD models that are significantly smaller than those generally found experimentally. While smaller models allow for efficient study of local surface configurations, increasing the size of the QD model will increase the size or number of facets, which can in turn influence the energetics and characteristics of trap formation. Moreover, core-shell structures can only be studied with QD models that are large enough to accommodate the different layers with the correct thickness. Here, we use DFT calculations to study the electronic properties of QDs as a function of size, up to a diameter of ∼4.5 nm. We show that increasing the size of QD models traditionally used in DFT studies leads to a disappearance of the band gap and localization of the HOMO and LUMO levels on facet-specific regions of the QD surface. We attribute this to the lateral coupling of surface orbitals and the formation of surface bands. The introduction of surface vacancies and their a posteriori refilling with Z-type ligands leads to surface reconstructions that widen the band gap and delocalize both the HOMO and LUMO. These results show that the surface geometry of the facets plays a pivotal role in defining the electronic properties of the QD.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10795476PMC
http://dx.doi.org/10.1021/acsnano.3c09265DOI Listing

Publication Analysis

Top Keywords

surface
8
surface reconstructions
8
quantum dots
8
dft calculations
8
increasing size
8
electronic properties
8
band gap
8
homo lumo
8
reconstructions ii-vi
4
ii-vi quantum
4

Similar Publications

A collagen-inspired helical protein-mimic has been synthesized via topochemical polymerization of a designed tripeptide monomer. In the monomer crystal, molecules arrange in a head-to-tail manner, forming supramolecular helices. The azide and alkyne of adjacent molecules in the supramolecular helix are proximally preorganized in a ready-to-react arrangement.

View Article and Find Full Text PDF

The matere bond.

Dalton Trans

January 2025

Department of Chemistry, Universitat de les Illes Balears, Crta de Valldemossa km 7.5, 07122 Palma de Mallorca, Baleares, Spain.

This perpective delves into the emerging field of matere bonds, a novel type of noncovalent interaction involving group 7 elements such as manganese, technetium, and rhenium. Matere bonds, a new member of the σ-hole family where metal atoms act as electron acceptors, have been shown experimentally and theoretically to play significant roles in the self-assembly and stabilization of supramolecular structures both in solid-state and solution-phase environments. This perspective article explores the physical nature of these interactions, emphasizing their directionality and structural influence in various supramolecular architectures.

View Article and Find Full Text PDF

Environmental applications of metal-organic framework-based three-dimensional macrostructures: a review.

Chem Soc Rev

January 2025

Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Sciences, Zhejiang Normal University, Jinhua 321004, P. R. China.

Metal-organic frameworks (MOFs) hold considerable promise for environmental remediation owing to their exceptional performance and distinctive structure. Nonetheless, the practical implementation of MOFs encounters persistent technical hurdles, notably susceptibility to loss, challenging recovery, and potential environmental toxicity arising from the fragility, insolubility, and poor processability of MOFs. MOF-based three-dimensional macrostructures (3DMs) inherit the advantageous attributes of the original MOFs, such as ultra-high specific surface area, tunable pore size, and customizable structure, while also incorporating the intriguing characteristics of bulk materials, including hierarchical structure, facile manipulation, and structural flexibility.

View Article and Find Full Text PDF

Prostate cancer antigen 3 (PCA3) has emerged as a critical biomarker for the early detection of prostate cancer, complementing the traditional prostate-specific antigen (PSA) testing. This research presents a novel resistive sensor based on reduced graphene oxide (RGO) functionalized with glutaraldehyde (GA)/complementary single-stranded DNA (ss-DNA) for the detection of the PCA3 RNA. The device was meticulously characterized at each fabrication step to confirm the successful integration of the various layers on the sensor device, utilizing atomic force microscopy (AFM) which confirmed the increase in the thickness of the sensor from ∼1.

View Article and Find Full Text PDF

The controlled binding of proteins on nanoparticle surfaces remains a grand challenge required for many applications ranging from biomedical to energy storage. The difficulty in achieving this ability arises from the different functional groups of the biomolecule that can adsorb on the nanoparticle surface. While most proteins can only adopt a single structure, metamorphic proteins can access at least two different conformations, which presents intriguing opportunities to exploit such structural variations for binding to nanoparticles.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!