The tumor microenvironment and cancer-associated fibroblasts (CAFs) play crucial roles in tumor development, and their metabolic coupling remains unclear. Clinical data showed a positive correlation between PDGF-BB, CAFs, and glycolysis in the tumor microenvironment of oral tongue squamous cell carcinoma patients. In vitro, CAFs are derived from hOMF cells treated with PDGF-BB, which induces their formation and promotes aerobic glycolysis. Mitophagy increased the PDGF-BB-induced formation of CAF phenotypes and aerobic glycolysis, while autophagy inhibition blocked PDGF-BB-induced effects. Downregulation of miR-26a-5p was observed in CAFs; upregulation of miR-26a-5p inhibited the expression of mitophagy-related proteins ULKI, Parkin, PINK1, and LC3 and aerobic glycolysis in PDGF-BB-induced CAFs. PDGF-BB-induced CAFs promoted tumor cell proliferation, invasion, metastasis, NF-κB signaling pathway activation, and PDGF-BB secretion. Thus, PDGF-BB is associated with lactate-induced CAF formation and glucose metabolism reprogramming. These findings indicate potential therapeutic targets in oral tongue squamous cell carcinoma.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10763357 | PMC |
http://dx.doi.org/10.1186/s12935-023-03172-6 | DOI Listing |
Transl Oncol
January 2025
State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China. Electronic address:
Metabolic reprogramming is a hallmark of cancer. The"Warburg effect", also known as aerobic glycolysis, is an essential part of metabolic reprogramming and a central contributor to cancer progression. Moreover, hypoxia is one of the significant features of pancreatic ductal adenocarcinoma (PDAC).
View Article and Find Full Text PDFBiochem Genet
January 2025
Department of Cardiac Function, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430070, Hubei, China.
Lung adenocarcinoma (LUAD) is characterized by its aggressive nature and resistance to treatment. FAM107A is a tumor suppressor gene that has been found to possess inhibitory effects in several cancers, but its role in LUAD remains unclear. This study investigated the role of FAM107A in regulating LUAD cell growth, invasion and aerobic glycolysis and also investigated the potential underlying mechanisms.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
University of Miami, Coral Gables, FL, USA.
Background: Cerebral blood flow is decreased in mouse models and patients of Alzheimer's disease (AD). We identified that about 2% of cortical capillaries in the APP/PS1 mouse model of AD had stalled blood flow due to neutrophils obstructing capillaries and contributing to vascular inflammation. Neutrophils are more reactive in AD.
View Article and Find Full Text PDFJ Transl Med
January 2025
Department of Breast Surgery, General Surgery Center, The First Hospital of Jilin University, No.71, Xinmin Street, Changchun City, Jilin Province, P.R. China.
Background: Dysregulated energy metabolism has emerged as a defining hallmark of cancer, particularly evident in triple-negative breast cancer (TNBC). Distinct from other breast cancer subtypes, TNBC exhibits heightened glycolysis and aggressiveness. However, the transcriptional mechanisms of aerobic glycolysis in TNBC remains poorly understood.
View Article and Find Full Text PDFSci Rep
January 2025
Departments of Gastrointestinal Surgery, Affiliated Hospital of Guangdong Medical University, No. 57, South of Renmin Avenue, Zhanjiang, 524001, Guangdong Province, China.
We aimed to explore the role of circular RNA 0043256 (circ_0043256) in gastric cancer (GC) and its underlying mechanisms. The impact of circ_0043256 silencing on the proliferation, migration, apoptosis, and aerobic glycolysis of MKN-45 and AGS cells induced by CoCl2 was assessed through the utilization of CCK-8, wound healing assay, flow cytometry, and metabolic analysis. The interaction between circ_0043256 and miR-593-5p, as well as the involvement of the miR-593-5p/RRM2 axis in gastric cancer, were confirmed via luciferase assay, Western blot, and bioinformatics analysis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!