Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Aprotic lithium-oxygen (Li-O) batteries are considered to be a promising alternative option to lithium-ion batteries for high gravimetric energy storage devices. However, the sluggish electrochemical kinetics, the passivation, and the structural damage to the cathode caused by the solid discharge products have greatly hindered the practical application of Li-O batteries. Herein, the nonsolid-state discharge products of the off-stoichiometric LiO in the electrolyte solutions are achieved by iridium (Ir) single-atom-based porous organic polymers (termed as Ir/AP-POP) as a homogeneous, soluble electrocatalyst for Li-O batteries. In particular, the numerous atomic active sites act as the main nucleation sites of O-related discharge reactions, which are favorable to interacting with O/LiO intermediates in the electrolyte solutions, owing to the highly similar lattice-matching effect between the in situ-formed IrLi and LiO, achieving a nonsolid LiO as the final discharge product in the electrolyte solutions for Li-O batteries. Consequently, the Li-O battery with a soluble Ir/AP-POP electrocatalyst exhibits an ultrahigh discharge capacity of 12.8 mAh, an ultralow overpotential of 0.03 V, and a long cyclic life of 700 h with the carbon cloth cathode. The manipulation of nonsolid discharge products in aprotic Li-O batteries breaks the traditional growth mode of LiO, bringing Li-O batteries closer to being a viable technology.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jacs.3c08656 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!