The effective combination of ultra-precise detection and on-demand sterilization stands out as one of the most valuable antifouling methods to combat pathogenic bacteria source and ensure the environment and food safety. Herein, an innovative "five birds one stone" aptasensor has been reported. It integrates magnetic separation, tri-modal precision detection, and efficient sterilization for monitoring of Staphylococcus aureus. Firstly, as a switch of the aptasensor, aptamer-modified potassium chloride-doped carbon dots (apt/KCl@CDs) could be adsorbed onto the surface of magnetic multi-walled carbon nanotube composites (M-MWCNTs) through π-π stacking, which could be replaced by the specific binding of the target bacteria to the aptamer. The mutual interference between the nanomaterials could be eliminated by this reverse magnetosorption strategy, enhancing the test sensitivity. In addition to the fluorescence properties, the peroxidase activity possessed by apt/KCl@CDs enables the conversion of the (3,3',5,5'-tetramethylbenzidine) TMB-HO colorimetric system to a photothermal modal. Then, the ultra-precision detection in the assay was achieved by the fluorescence-colorimetric-photothermal tri-modal sensing from the formation of S. aureus-apt/KCl@CDs in the supernatant. Besides, the efficient sterilization could be ensured by adsorbing the apt/KCl@CDs on the surface of S. aureus, generating toxic •OH for direct attacking cells. This was the first report that was more beneficial for bacterial eradication. The detection limits of fluorescence, colorimetric and photothermal modals were 4.81 cfu/mL, 3.40 cfu/mL and 6.74 cfu/mL, respectively. The magnetic nanoplatform integrating tri-modal detection-sterilization meets the demand for highly sensitive and precise detection in different scenarios, providing immediate control for pathogens and broad application prospects.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bios.2023.115991 | DOI Listing |
Sci Rep
January 2025
Department of Zoonoses, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt.
Klebsiella pneumoniae is an opportunistic pathogen responsible for various infections in humans and animals. It is known for its resistance to multiple antibiotics, particularly through the production of Extended-Spectrum Beta-Lactamases (ESBLs), and its ability to form biofilms that further complicate treatment. This study aimed to isolate and identify K.
View Article and Find Full Text PDFEpidemiol Infect
January 2025
Health Protection Operations, South West, UK Health Security Agency, Bristol, UK.
In September 2023, the UK Health Security Agency's (UKHSA) South West Health Protection Team received notification of patients with perichondritis. All five cases had attended the same cosmetic piercing studio and a multi-disciplinary outbreak control investigation was subsequently initiated. An additional five cases attending the same studio were found.
View Article and Find Full Text PDFProbiotics Antimicrob Proteins
January 2025
Department of Poultry Production, Faculty of Animal Production and Technology, University of Veterinary and Animal Sciences, Lahore, Pakistan.
This experiment aimed to compare the efficacy of an antimicrobial peptide (AMP) with a conventional antibiotic growth promoter (AGP) during necrotic enteritis (NE) challenge in broilers. In total, 720 1-day-old exclusively male broiler chicks (Ross-308) were allocated to five treatments, each with six replicates of 24 birds (n = 144/treatment), for 35 days. The treatments were as follows: (1) uninfected control (UC) with basal diet, (2) infected control (IC) with C.
View Article and Find Full Text PDFSci Rep
January 2025
Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Ashworth Laboratories, King's Buildings, Charlotte Auerbach Road, Edinburgh, EH9 3FL, UK.
Emerging infectious diseases are of major concern to animal and human health. Recent emergence of high pathogenicity avian influenza virus (HPAIV) (H5N1 clade 2.3.
View Article and Find Full Text PDFBioinspir Biomim
January 2025
School of Mechatronical Engineering, Beijing Institute of Technology, 5 South Zhonghuancun, Haidian District, Beijing 100081, Beijing, 100081, CHINA.
The wings of birds contain complex morphing mechanisms that enable them to perform remarkable aerial maneuvers. Wing morphing is often described using five wingbeat motion parameters: flapping, bending, folding, sweeping, and twisting. However, owing to a lack of real bird flight data, in-depth studies on the aerodynamic properties of these coupled motions remain scarce.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!