The ability to control gene expression in mammalian cells is crucial for safe and efficacious gene therapies and for elucidating gene functions. Current gene regulation systems have limitations such as harmful immune responses or low efficiency. We describe the pA regulator, an RNA-based switch that controls mammalian gene expression through modulation of a synthetic polyA signal (PAS) cleavage introduced into the 5' UTR of a transgene. The cleavage is modulated by a 'dual-mechanism'-(1) aptamer clamping to inhibit PAS cleavage and (2) drug-induced alternative splicing that removes the PAS, both activated by drug binding. This RNA-based methodology circumvents the immune responses observed in other systems and achieves a 900-fold induction with an EC of 0.5 µg ml tetracycline (Tc), which is well within the FDA-approved dose range. The pA regulator effectively controls the luciferase transgene in live mice and the endogenous CD133 gene in human cells, in a dose-dependent and reversible manner with long-term stability.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41587-023-01989-0DOI Listing

Publication Analysis

Top Keywords

gene expression
12
mammalian gene
8
expression modulation
8
polya signal
8
immune responses
8
pas cleavage
8
gene
7
control mammalian
4
modulation polya
4
cleavage
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!