Here, a series of transition metal (Ni) doped iron-based perovskite oxides LaFeNiO ( = 0, 0.25, 0.5, 0.75, 1) were prepared, and then the perovskite oxide with the optimized nickel-iron ratio was doped with non-metallic elements (N). Experimental and theoretical investigations reveal that the co-doping breaks the traditional linear constraint relationship ( - = 3.2 eV) and the theoretical overvoltage is reduced from 0.64 V (LaFeO) to 0.44 V (LaFeNiO/N). Specifically, Ni-doping can accelerate electron transfer and improve the conductivity. Moreover, N-doping can reduce the adsorption energy of *OH/*O and enhance the adsorption energy of *OOH. We demonstrated that the optimized cation and anion co-doped LaFeNiO/N perovskite oxide exhibits an excellent OER performance, with a low overpotential of 270.6 mV at 10 mA cm and a small Tafel slope of 65 mV dec in 1 M KOH solution, markedly exceeding that of the parent perovskite oxide LaFeO (300.9 mV) and commercial IrO (289.1 mV). It also delivers decent durability with no significant degradation after a 35 h stability test. This work reveals the internal mechanism of perovskite oxide by doping cation and anion for water oxidation, which broadens the idea for the rational design of new perovskite-based sustainable energy catalysts.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d3nr05259aDOI Listing

Publication Analysis

Top Keywords

perovskite oxide
16
adsorption energy
8
cation anion
8
perovskite
5
motif b/o-site
4
b/o-site modulation
4
modulation lafeo
4
lafeo boosted
4
boosted oxygen
4
oxygen evolution
4

Similar Publications

The symmetry breaking that is formed when oxide layers are combined epitaxially to form heterostructures has led to the emergence of new functionalities beyond those observed in the individual parent materials. SrTiO-based heterostructures have played a central role in expanding the range of functional properties arising at the heterointerface and elucidating their mechanistic origin. The heterostructure formed by the epitaxial combination of spinel γ-AlO and perovskite SrTiO constitutes a striking example with features distinct from perovskite/perovskite counterparts such as the archetypical LaAlO/SrTiO heterostructure.

View Article and Find Full Text PDF

Semitransparent perovskite solar cells (ST-PSCs) for building-integrated photovoltaics (BIPV) face the challenge of achieving high efficiency due to significant light loss. The SnO2 electron transport layer (ETL), utilized in n-i-p PSCs and prepared via the sol-gel method, is susceptible to aggregation on substrate, resulting in light scattering that diminishes absorption of the perovskite layer. In this study, we propose a strategy that combines atomic layer deposition (ALD) and sol-gel solution to deposit a bilayer SnO2 structure to address these issues.

View Article and Find Full Text PDF

Organic Crosslinked Tin Oxide Mitigating Buried Interface Defects for Efficient and Stable Perovskite Solar Cells.

Angew Chem Int Ed Engl

January 2025

Southern University of Science and Technology, Department of Materials Science and Engineering, NO.1088,Xueyuan Avenue,Nanshan District, 518055, Shenzhen, CHINA.

Tin dioxide (SnO2) stands as a promising material for the electron transport layer (ETL) in perovskite solar cells (PSCs) attributed to its superlative optoelectronic properties. The attainment of superior power conversion efficiency hinges critically on the preparation of high-quality SnO2 thin films. However, conventional nanoparticle SnO2 colloids often suffer from inherent issues such as numerous oxygen vacancy defects and film non-uniformity.

View Article and Find Full Text PDF

A novel dual-mode microfluidic sensing platform integrating photoelectrochemical (PEC) and fluorescence (FL) sensors was developed for the sensitive monitoring of heart fatty acid binding protein (h-FABP). First, BiVO/AgInS (BVAIS) composites with excellent photoelectric activity were synthesized as sensing matrices. The BVAIS heterojunction with a well-matched internal energy level structure provided a stable photocurrent.

View Article and Find Full Text PDF

Lattice Oxygen Redox Dynamics in Zeolite-Encapsulated CsPbBr Perovskite OER Electrocatalysts.

Adv Sci (Weinh)

January 2025

Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China.

Understanding the oxygen evolution reaction (OER) mechanism is pivotal for improving the overall efficiency of water electrolysis. Despite methylammonium lead halide perovskites (MAPbX) have shown promising OER performance due to their soft-lattice nature that allows lattice-oxygen oxidation of active α-PbO layer surface, the role of A-site MA or X-site elements in the electrochemical reconstruction and OER mechanisms has yet to be explored. Here, it is demonstrated that the OER mechanism of perovskite@zeolite composites is intrinsically dominated by the A-site group of lead-halide perovskites, while the type of X-site halogen is crucial for the reconstruction kinetics of the composites.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!