This comprehensive review investigates the growing adoption of electric vehicles (EVs) as a practical solution for environmental concerns associated with fossil fuel usage in mobility. The increasing demand for EVs underscores the critical importance of establishing efficient, fast-charging infrastructure, especially from the standpoint of the electrical power grid. The review systematically examines the planning strategies and considerations for deploying electric vehicle fast charging stations. It emphasizes their unique dual role as loads and storage units, intricately linked to diverse road and user constraints. Furthermore, the review underscores the significant opportunity surrounding these stations for the integration of distributed renewable energy sources. It thoroughly explores the challenges and opportunities intrinsic to the planning and localization process, providing insights into the complexities associated with these multifaceted stations. Renewable resources, including wind and solar energy, are investigated for their potential in powering these charging stations, with a simultaneous exploration of energy storage systems to minimize environmental impact and boost sustainability. In addition to analyzing planning approaches, the review evaluates existing simulation models and optimization tools employed in designing and operating fast charging stations. The review consolidates key findings and offers recommendations to researchers and grid authorities, addressing critical research gaps arising from the escalating demand for electric vehicle fast-charging infrastructure. This synthesis is a valuable resource for advancing understanding and implementing robust strategies in integrating EVs with the electrical power grid.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10762045 | PMC |
http://dx.doi.org/10.1038/s41598-023-50825-7 | DOI Listing |
Small
January 2025
College of Aerospace Engineering, Chongqing University, Chongqing, 400044, China.
Realizing fast charging in high-specific-energy lithium metal batteries (LMBs) remains a significant challenge. Here, a oleophilic garnet suspension electrolyte design is reported, using inorganic solid electrolyte modified by low-surface-energy 1H,1H,2H,2H-perfluorooctyl trichlorosilane (PFOTS), to address the dilemma of fast charging and high specific energy in LMBs. With the oleophilic suspension electrolytes, the ionic conductivity of carbonate electrolyte is increased by ≈20%.
View Article and Find Full Text PDFRev Sci Instrum
January 2025
Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany.
We describe a simple gas expansion ion source based on static discharge voltages and a commercially available pulsed valve. The discharge is initiated by the gas pulse itself between two high voltage electrodes, without the need for fast voltage switches or complex timing schemes. The ion source very reliably produces intense bursts of molecular ions (with currents exceeding 100 μA during the pulse-on phase) with only minor pulse-to-pulse variations in intensity and pulse shape.
View Article and Find Full Text PDFNano Lett
January 2025
Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
Lithium nitrate (LiNO) stands as an effective electrolyte additive, mitigating the degradation of Li metal anodes by forming a LiN-rich solid electrolyte interphase (SEI). However, its conversion kinetics are impeded by energy-consuming eight-electron transfer reactions. Herein, an isoreticular metal-organic framework-8-derived carbon is incorporated into the carbon cloth (RMCC) as a catalytic current collector to regulate the LiNO conversion kinetics and boost LiN generation inside the SEI.
View Article and Find Full Text PDFNano Lett
January 2025
State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China.
The transformation of bulk transition-metal dichalcogenide (TMD) particles into ultrathin nanosheets with both an acceptable yield and preserved crystalline integrity presents a substantial challenge in electrochemical exfoliation. This challenge arises from the continuous potential stress that the materials experience in traditional exfoliation setups. Herein, we propose a new fluidized electrochemical exfoliation (FEE) method to efficiently transform TMD powders into high-quality, few-layered TMD nanosheets in the aqueous phase.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Hangzhou Dianzi University, College of Automation, CHINA.
The precise and rapid extraction of lithium from salt-lake brines is critical to meeting the global demand for lithium resources. However, it remains a major challenge to design ion-transport membranes with accurate recognition and fast transport path for the target ion. Here, we report a triazine covalent organic framework (COF) membrane with high resolution for Li+ and Mg2+ that enables fast Li+ transport while almost completely inhibiting Mg2+ permeation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!