The abuse of antibiotics has led to the emergence of a wide range of drug-resistant bacteria. To address the challenge of drug-resistant bacterial infections and related infectious diseases, several effective antibacterial strategies have been developed. To achieve enhanced therapeutic effects, combinational treatment approaches should be employed. With this in mind, a metal-organic framework (MOF) based nanoreactor with integrated photodynamic therapy (PDT) and gas therapy which can release reactive oxygen species (ROS) and carbon monoxide (CO) under red light irradiation has been developed. The release of ROS and CO under red light irradiation exerts a preferential antibacterial effect on Gram-positive/Gram-negative bacteria. The bactericidal effects of ROS and CO on () and methicillin-resistant (MRSA) are better than ROS only, showing a combinational antibacterial effect. Furthermore, the fluorescence emission properties of porphyrin moieties can be leveraged for real-time tracking and imaging of the nanoreactors. The simple preparation procedures of this material further enhance its potential as a versatile and effective antibacterial candidate, thereby presenting a new strategy for PDT and gas combinational treatment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d3tb01829f | DOI Listing |
PLoS Pathog
January 2025
Graduate Program in Immunology, Ann Arbor, Michigan, United States of America.
Neutrophils play key protective roles in influenza infections, yet excessive neutrophilic inflammation is a hallmark of acute lung injury during severe infections. Phenotypic heterogeneity is increasingly recognized in neutrophil populations; however, how functional variation in neutrophils between individuals determine the diverse outcomes of influenza remains unclear. To examine immunologic responses that may drive varying outcomes in influenza, we infected C57BL/6 (B6) and A/J mice with mouse-adapted influenza A virus A/PR/8/34 H1N1.
View Article and Find Full Text PDFPhysiol Plant
January 2025
Department of Plant Breeding, CEBAS-CSIC, Group of Fruit Biotechnology, Murcia, Spain.
Halophytes display distinctive physiological mechanisms that enable their survival and growth under extreme saline conditions. This makes them potential candidates for their use in saline agriculture. In this research, tomato (Solanum lycopersium Mill.
View Article and Find Full Text PDFChemMedChem
January 2025
Peking University, No.38 Xueyuan Rd, 100191, Beijing, CHINA.
Low cure rate and high death rate of cancers have seriously threatened human health. The combining multiple therapies is a promising strategy for cancer treatment. In this study, we construct a novel multinucleated nanocomplex loaded with carbon dots (CDs-SA@TAMn) that responds to tumor microenvironment for combined photothermal/chemodynamic cancer therapy.
View Article and Find Full Text PDFAnal Methods
January 2025
Analytical Chemistry Department, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt.
Hypertension and dyslipidemia are two of the most frequently co-occurring cardiovascular risk factors. The combined regimen of hydrochlorothiazide (HCTZ), rosuvastatin (ROS), and losartan (LOS) helped in the successful management of both conditions. This work's objective is to develop an eco-friendly, sensitive, simple, and reliable chromatographic method for the simultaneous estimation of HCTZ, ROS, and the LOS ternary mixture in their pure form, and pharmaceutical formulations.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China.
Gasdermin (GSDM)-mediated pyroptosis involves the induction of mitochondrial damage and the subsequent release of mitochondrial DNA (mtDNA), which is anticipated to activate the cGAS-STING pathway, thereby augmenting the antitumor immune response. However, challenges lie in effectively triggering pyroptosis in cancer cells and subsequently enhancing the cGAS-STING activation with specificity. Herein, we developed intelligent self-cascaded pyroptosis-STING initiators of cobalt fluoride (CoF) nanocatalysts for catalytic metalloimmunotherapy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!