Lipid nanodomains and receptor signaling: From actin-based organization to membrane mechanics.

Curr Opin Cell Biol

Institut Curie - Centre de Recherche, PSL Research University, Membrane Mechanics and Dynamics of Intracellular Signaling Laboratory, Paris, France; Institut National de la Santé et de la Recherche Médicale (INSERM), U1143, Paris, France; Centre National de la Recherche Scientifique (CNRS), UMR 3666, Paris, France. Electronic address:

Published: February 2024

The plasma membrane serves as the primary barrier between the cell's interior and its external surroundings, which places it at the forefront of intercellular communication, receptor signal transduction and the integration of mechanical forces from outside. Most of these signals are largely dependent on the plasma membrane heterogeneity which relies on lipid-lipid and lipid-protein interactions and the lateral nano-distribution of lipids organized by the dynamic network of cortical actin. In this review, we undertake an in-depth exploration of recent discoveries, which contribute significantly to the evolution from raft model to lipid nanodomains. Specifically, we will focus on their role in membrane receptor-mediated signaling in the context of cell membrane mechanics.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ceb.2023.102308DOI Listing

Publication Analysis

Top Keywords

lipid nanodomains
8
membrane mechanics
8
plasma membrane
8
membrane
5
nanodomains receptor
4
receptor signaling
4
signaling actin-based
4
actin-based organization
4
organization membrane
4
mechanics plasma
4

Similar Publications

Membrane nanodomains to shape plant cellular functions and signaling.

New Phytol

December 2024

IPSiM, Univ Montpellier, CNRS, INRAE, Institut Agro, Montpellier, 34000, France.

Plasma membrane (PM) nanodomains have emerged as pivotal elements in the regulation of plant cellular functions and signal transduction. These nanoscale membrane regions, enriched in specific lipids and proteins, behave as regulatory/signaling hubs spatially and temporally coordinating critical cellular functions. In this review, we first examine the mechanisms underlying the formation and maintenance of PM nanodomains in plant cells, highlighting the roles of PM lipid composition, protein oligomerization and interactions with cytoskeletal and cell wall components.

View Article and Find Full Text PDF

Development of an understanding of membrane nanodomains colloquially known as "lipid rafts" has been hindered by a lack of pharmacological tools to manipulate rafts and protein affinity for rafts. We screened 24,000 small molecules for modulators of the affinity of peripheral myelin protein 22 (PMP22) for rafts in giant plasma membrane vesicles (GPMVs). Hits were counter-screened against another raft protein, MAL, and tested for impact on raft , leading to two classes of compounds.

View Article and Find Full Text PDF

Cholesterol is a fundamental component of cellular membranes, and its organization, distribution, and recycling are tightly regulated. Cholesterol can form, together with other lipids and proteins, membrane nanodomains, which play important roles in membrane trafficking, the spatiotemporal organization of signal transduction, or the modulation of plasma membrane transporters, among others. Not surprisingly then, the misregulation of cholesterol biosynthetic and transport pathways has been related to numerous diseases, including neurodegenerative and metabolic disorders.

View Article and Find Full Text PDF

Remorins are multifunctional proteins, regulating immunity, development and symbiosis in plants. When associating to the membrane, remorins sequester specific lipids into functional membrane nanodomains. The multigenic protein family contains six groups, classified upon their protein-domain composition.

View Article and Find Full Text PDF

Similar to T cells and B cells, mast cell surfaces are dominated by microvilli, and like these other immune cells we showed with microvillar cartography (MC) that key signaling proteins for RBL mast cells localize to these topographical features. Although stabilization of ordered lipid nanodomains around antigen-crosslinked IgE-FcεRI is known to facilitate necessary coupling with Lyn tyrosine kinase to initiate transmembrane signaling in these mast cells, the relationship of ordered-lipid nanodomains to membrane topography had not been determined. With nanoscale resolution provided by MC, SEM and co-localization probability (CP) analysis, we found that FcεRI and Lyn kinase are positioned exclusively on the microvilli of resting mast cells in separate nano-assemblies, and upon antigen-activation they merge into overlapping populations together with the LAT scaffold protein, accompanied by elongation and merger of microvilli into ridge-like ruffles.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!