Accurately predicting the effect of missense variants is a central problem in interpretation of genomic variation. Commonly used computational methods does not capture the quantitative impact on fitness in populations. We developed to estimate missense fitness effect using biobank-scale human population genome data. jointly models the effect at molecular level and population level (selection coefficient, ), assuming that in the same gene, missense variants with similar have similar . is a probabilistic graphical model that integrates deep neural network components and population genetics models efficiently with inductive bias based on biological causality of variant effect. We trained it by maximizing probability of observed allele counts in 236,017 European individuals. We show that is informative in predicting frequency across ancestries and consistent with the fraction of de novo mutations given . Finally, outperforms previous methods in prioritizing missense variants in individuals with neurodevelopmental disorders.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10760286 | PMC |
http://dx.doi.org/10.1101/2023.12.11.23299809 | DOI Listing |
Rheumatology (Oxford)
January 2025
Department of Cell Biology and Immunology, Institute of Parasitology and Biomedicine López-Neyra, CSIC, Granada, Spain.
Objectives: COVID-19 and systemic sclerosis (SSc) share multiple similarities in their clinical manifestations, alterations in immune response, and therapeutic options. These resemblances have also been identified in other immune-mediated inflammatory diseases where a common genetic component has been found. Thus, we decided to evaluate for the first time this shared genetic architecture with SSc.
View Article and Find Full Text PDFFront Pediatr
January 2025
Department of Neurology, Second Affiliated Hospital of Fujian Medical University, Quanzhou, China.
Background: Whole exome sequencing (WES) technology has been increasingly used for the etiological diagnosis of fetuses with ultrasound anomalies. In this article, we report a novel deletion compound combined with a causative variant in gene leading to short-rib thoracic dysplasia 7 (SRTD7) with or without polydactyly using WES.
Methods: This study involved a Chinese fetus with clinical features of skeletal dysplasia on ultrasound imaging, in whom chromosome abnormalities and copy number variants (CNVs) were detected by chromosomal microarray analysis (CMA), and sequence variants were detected by WES.
Mol Genet Genomic Med
February 2025
Medical Genetics, Department of Precision Medicine, University of Campania 'Luigi Vanvitelli', Naples, Italy.
Background: Sensorineural hearing loss (SNHL) is a frequent manifestation of syndromic inherited retinal diseases (IRDs), exemplified by the very rare form of autosomal-dominant Leber congenital amaurosis with early onset deafness (LCAEOD; OMIM #617879). LCAEOD was first described in 2017 in four families segregating heterozygous missense mutations in TUBB4B, a gene encoding a β-tubulin isotype. To date, only eight more families with similar TUBB4B-associated sensorineural disease (SND) have been reported.
View Article and Find Full Text PDFAm J Med Genet A
January 2025
Department of Pediatrics, University of Connecticut School of Medicine, Farmington, Connecticut, USA.
P21-activated kinase 2 (PAK2) is a serine/threonine kinase essential for a variety of cellular processes including signal transduction, cellular survival, proliferation, and migration. A recent report proposed monoallelic PAK2 variants cause Knobloch syndrome type 2 (KNO2)-a developmental disorder primarily characterized by ocular anomalies. Here, we identified a novel de novo heterozygous missense variant in PAK2, NM_002577.
View Article and Find Full Text PDFMol Cell Probes
January 2025
Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran. Electronic address:
Osteopetrosis is a group of genetically and clinically diverse inherited disorders characterized by an increase in bone density. The main known cause is an abnormality in the development or function of osteoclasts. Hence, the process of bone resorption is impaired, resulting in: 1- a reduction in bone marrow volume and, subsequently, a decrement in the hematopoietic capacity of bone marrow, which leads to anemia and compromised immunological function; 2- improper bone development, which leads to pressure on peripheral nerves, causing auditory, visual, and movement impairments; and 3- disturbance in the formation of bone microstructure that leads to susceptibility to bone fracture.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!