While glioblastoma (GBM) progression is associated with extensive extracellular matrix (ECM) secretion, the causal contributions of ECM secretion to invasion remain unclear. Here we investigate these contributions by combining engineered materials, proteomics, analysis of patient data, and a model of bevacizumab-resistant GBM. We find that GBM cells cultured in engineered 3D hyaluronic acid hydrogels secrete ECM prior to invasion, particularly in the absence of exogenous ECM ligands. Proteomic measurements reveal extensive secretion of collagen VI, and collagen VI-associated transcripts are correspondingly enriched in microvascular proliferation regions of human GBMs. We further show that bevacizumab-resistant GBM cells deposit more collagen VI than their responsive counterparts, which is associated with marked cell-ECM stiffening. COL6A3 deletion in GBM cells reduces invasion, β-catenin signaling, and expression of mesenchymal markers, and these effects are amplified in hypoxia. Our studies strongly implicate GBM cell-derived collagen VI in microenvironmental remodeling to facilitate invasion.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10760023PMC
http://dx.doi.org/10.1101/2023.12.12.571198DOI Listing

Publication Analysis

Top Keywords

gbm cells
12
facilitate invasion
8
ecm secretion
8
bevacizumab-resistant gbm
8
gbm
6
collagen
5
invasion
5
glioma cells
4
cells secrete
4
secrete collagen
4

Similar Publications

Peptide-based PET/CT imaging visualizes PD-L1-driven radioresistance in glioblastoma.

Drug Resist Updat

January 2025

Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China. Electronic address:

Radioresistance remains a great challenge for radiotherapy in the treatment of glioblastoma (GBM). PD-L1 expression is a key contributor to radioresistance and immune escape in GBM. The lack of effective methods to monitor the change of PD-L1 during radiotherapy in patients limits timely intervention and management of the resistance.

View Article and Find Full Text PDF

Aims: This study aimed to develop Imatinib Mesylate (IMT)-loaded Poly Lactic-co-Glycolic Acid (PLGA)-D-α-tocopheryl polyethylene glycol succinate (TPGS)- Polyethylene glycol (PEG) hybrid nanoparticles (CSLHNPs) with optimized physicochemical properties for targeted delivery to glioblastoma multiforme.

Background: Glioblastoma multiforme (GBM) is the most destructive type of brain tumor with several complications. Currently, most treatments for drug delivery for this disease face challenges due to the poor blood-brain barrier (BBB) and lack of site-specific delivery.

View Article and Find Full Text PDF

Amphiphilic hemicyanine molecular probes crossing the blood-brain barrier for intracranial optical imaging of glioblastoma.

Sci Adv

January 2025

Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China.

Intracranial optical imaging of glioblastoma (GBM) is challenging due to the scarcity of effective probes with blood-brain barrier (BBB) permeability and sufficient imaging depth. Herein, we describe a rational strategy for designing optical probes crossing the BBB based on an electron donor-π-acceptor system to adjust the lipid/water partition coefficient and molecular weight of probes. The amphiphilic hemicyanine dye (namely, IVTPO), which exhibits remarkable optical properties and effective BBB permeability, is chosen as an efficient fluorescence/photoacoustic probe for in vivo real-time imaging of orthotopic GBM with high resolution through the intact skull.

View Article and Find Full Text PDF

Glioblastoma multiforme (GBM) is characterized by pronounced immune escape and resistance to chemotherapy-induced apoptosis. Preliminary investigations revealed a marked overexpression of gasdermin E (GSDME) in GBM. Notably, cisplatin (CDDP) demonstrated a capacity of inducing pyroptosis by activating caspase-3 to cleave GSDME, coupled with the release of proinflammatory factors, indicating the potential as a viable approach of inducing anti-tumor immune activation.

View Article and Find Full Text PDF

Hemorrhagic stroke is a known complication of glioma, yet the underlying mechanisms remain poorly understood. This study aims to investigate key biomarkers of glioma-related hemorrhage to provide insights into glioma molecular therapies. Data were obtained from the Gene Expression Omnibus (GEO) and the Cancer Genome Atlas (TCGA) databases to analyze differentially expressed genes (DEGs) in glioma by contrasting glioblastoma (GBM) with low-grade gliomas (LGGs).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!