Background: After introduction of pneumococcal conjugate vaccines (PCVs), serotype replacement occurred in the population of Predicting which pneumococcal clones and serotypes will become more common in carriage after vaccination can enhance vaccine design and public health interventions, while also improving our understanding of pneumococcal evolution. We sought to use invasive disease data to assess how well negative frequency-dependent selection (NFDS) models could explain pneumococcal carriage population evolution in the post-PCV13 epoch by weighting invasive data to approximate strain proportions in the carriage population.
Methods: Invasive pneumococcal isolates were collected and sequenced during 1998-2018 by the Active Bacterial Core surveillance (ABCs) from the Centers for Disease Control and Prevention (CDC). To predict the post-PCV13 population dynamics in the carriage population using a NFDS model, all genomic data were processed under a bioinformatic pipeline of assembly, annotation, and pangenome analysis to define genetically similar sequence clusters (i.e., strains) and a set of accessory genes present in 5% to 95% of the isolates. The NFDS model predicted the strain proportion by calculating the post-vaccine strain composition in the weighted invasive disease population that would best match pre-vaccine accessory gene frequencies. To overcome the biases of invasive disease data, serotype-specific inverse-invasiveness weights were defined as the ratio of the proportion of the serotype in the carriage data to the proportion in the invasive data, using data from 1998-2001 in the United States, before conjugate vaccine introduction. The weights were applied to adjust both the observed strain proportion and the accessory gene frequencies.
Results: Inverse-invasiveness weighting increased the correlation of accessory gene frequencies between invasive and carriage data with reduced residuals in linear or logit scale for pre-vaccine, post-PCV7, and post-PCV13. Similarly, weighting increased the correlation of accessory gene frequencies between different time periods in the invasive data. By weighting the invasive data, we were able to use the NFDS model to predict strain proportions in the carriage population in the post-PCV13 epoch, with the adjusted R-squared between predicted and observed strain proportions increasing from 0.176 to 0.544 after weighting.
Conclusions: The weighting system adjusted the invasive disease surveillance data to better represent the carriage population of . The NFDS mechanism predicted the strain proportions in the projected carriage population as estimated from the weighted invasive disease frequencies in the post-PCV13 epoch. Our methods enrich the value of genomic sequences from invasive disease surveillance, which is readily available, easy to collect, and of direct interest to public health.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10760274 | PMC |
http://dx.doi.org/10.1101/2023.12.10.23299786 | DOI Listing |
Respir Res
January 2025
School of Engineering, University of Warwick, Coventry, CV4 7AL, UK.
Introduction And Objectives: High flow nasal cannula (HFNC) therapy is an increasingly popular mode of non-invasive respiratory support for the treatment of patients with acute hypoxemic respiratory failure (AHRF). Previous experimental studies in healthy subjects have established that HFNC generates flow-dependent positive airway pressures, but no data is available on the levels of mean airway pressure (mP) or positive end-expiratory pressure (PEEP) generated by HFNC therapy in AHRF patients. We aimed to estimate the airway pressures generated by HFNC at different flow rates in patients with AHRF, whose functional lung volume may be significantly reduced compared to healthy subjects due to alveolar consolidation and/or collapse.
View Article and Find Full Text PDFCancer Cell Int
January 2025
Institute for Genome Engineered Animal Models of Human Diseases, National Center of Genetically Engineered Animal Models for International Research, Dalian Medical University, 9 West Section Lvshun South Road, Dalian, 116044, China.
Clear cell renal cell carcinoma (ccRCC) is a globally severe cancer with an unfavorable prognosis. PANoptosis, a form of cell death regulated by PANoptosomes, plays a role in numerous cancer types. However, the specific roles of genes associated with PANoptosis in the development and advancement of ccRCC remain unclear.
View Article and Find Full Text PDFRespir Res
January 2025
Shaanxi Provincial Key Laboratory of Bioelectromagnetic Detection and Intelligent Perception, Department of Biomedical Engineering, Air Force Medical University, Xi'an, 710032, China.
Background: Acute pulmonary embolism represents the third most prevalent cardiovascular pathology, following coronary heart disease and hypertension. Its untreated mortality rate is as high as 20-30%, which represents a significant threat to patient survival. In view of the current lack of real-time monitoring techniques for acute pulmonary embolism, this study primarily investigates the potential of the pulsatility electrical impedance tomography (EIT) technique for the detection and real-time monitoring of acute pulmonary embolism through the collection and imaging of the pulsatile signal of pulmonary blood flow.
View Article and Find Full Text PDFBackground: Dental caries is one of the most common non-communicable diseases in humans. Various interventions are available for the management, of which microinvasive techniques such as infiltration, sealants, glass ionomers, are novel and convenient. The purpose of this systematic review and meta-analysis was to compare microinvasive techniques with noninvasive or invasive treatment modalities in terms of effectiveness in halting interproximal caries lesion progression radiographically assessed.
View Article and Find Full Text PDFBMC Biol
January 2025
Department of Environmental Sciences, University of Basel, Basel, Switzerland.
Background: Treponemal diseases are a significant global health risk, presenting challenges to public health and severe consequences to individuals if left untreated. Despite numerous genomic studies on Treponema pallidum and the known possible biases introduced by the choice of the reference genome used for mapping, few investigations have addressed how these biases affect phylogenetic and evolutionary analysis of these bacteria. In this study, we ascertain the importance of selecting an appropriate genomic reference on phylogenetic and evolutionary analyses of T.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!