Despite the advantages of aqueous zinc (Zn) metal batteries (AZMB) like high specific capacity (820 mAh g and 5,854 mAh cm ), low redox potential (-0.76 V vs. the standard hydrogen electrode), low cost, water compatibility, and safety, the development of practically relevant batteries is plagued by several issues like unwanted hydrogen evolution reaction (HER), corrosion of Zn substrate (insulating ZnO, Zn(OH) , Zn(SO ) (OH) , Zn(ClO ) (OH) etc. passivation layer), and dendrite growth. Controlling and suppressing HER activity strongly correlates with the long-term cyclability of AZMBs. Therefore, a precise quantitative technique is needed to monitor the real-time dynamics of hydrogen evolution during Zn electrodeposition. In this study, we quantify hydrogen evolution using in situ electrochemical mass spectrometry (ECMS). This methodology enables us to determine a correction factor for the faradaic efficiency of this system with unmatched precision. For instance, during the electrodeposition of zinc on a copper substrate at a current density of 1.5 mA/cm for 600 seconds, 0.3 % of the total charge is attributed to HER, while the rest contributes to zinc electrodeposition. At first glance, this may seem like a small fraction, but it can be detrimental to the long-term cycling performance of AZMBs. Furthermore, our results provide insights into the correlation between HER and the porous morphology of the electrodeposited zinc, unravelling the presence of trapped H and Zn corrosion during the charging process. Overall, this study sets a platform to accurately determine the faradaic efficiency of Zn electrodeposition and provides a powerful tool for evaluating electrolyte additives, salts, and electrode modifications aimed at enhancing long-term stability and suppressing the HER in aqueous Zn batteries.

Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.202319010DOI Listing

Publication Analysis

Top Keywords

hydrogen evolution
12
zinc metal
8
metal batteries
8
electrochemical mass
8
mass spectrometry
8
faradaic efficiency
8
zinc
5
hydrogen
5
batteries
4
batteries electrons
4

Similar Publications

Transition-metal dichalcogenides (TMDs), such as molybdenum disulfide (MoS), have emerged as a generation of nonprecious catalysts for the hydrogen evolution reaction (HER), largely due to their theoretical hydrogen adsorption energy close to that of platinum. However, efforts to activate the basal planes of TMDs have primarily centered around strategies such as introducing numerous atomic vacancies, creating vacancy-heteroatom complexes, or applying significant strain, especially for acidic media. These approaches, while potentially effective, present substantial challenges in practical large-scale deployment.

View Article and Find Full Text PDF

The black soldier fly, , is a voracious scavenger of various organic materials; therefore, it could be exploited as a biological system for processing daily food waste. In order to survey novel hydrolytic enzymes, we constructed a fosmid metagenome library using unculturable intestinal microorganisms from . Through functional screening of the library on carboxymethyl cellulose plates, we identified a fosmid clone, the product of which displayed hydrolytic activity.

View Article and Find Full Text PDF

Water electrolysis is a promising path to the industrialization development of hydrogen energy. The exploitation of high-efficiency and inexpensive catalysts become important to the mass use of water decomposition. Ni-based nanomaterials have exhibited great potential for the catalysis of water splitting, which have attracted the attention of researchers around the world.

View Article and Find Full Text PDF

This article presents the synthesis, electrophysical, and catalytic properties of a LaMnO-LaFeO nanocomposite material. The nanocomposite was synthesized via the sol-gel (Pechini) method. X-ray diffraction (XRD) analysis revealed a polycrystalline, biphasic perovskite structure combining both hexagonal and cubic symmetry.

View Article and Find Full Text PDF

Tungsten Carbide/Tungsten Oxide Catalysts for Efficient Electrocatalytic Hydrogen Evolution.

Molecules

December 2024

Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.

Catalyzing hydrogen evolution reaction (HER) is a key process in high-efficiency proton exchange membrane water electrolysis (PEMWE) devices. To replace the use of Pt-based HER catalyst, tungsten carbide (WC) is one of the most promising non-noble-metal-based catalysts with low cost, replicable catalytic performance, and durability. However, the preparation access to scalable production of WC catalysts is inevitable.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!