Dopamine (DA) plays a critical role in striatal motor control. The drop in DA level within the dorsal striatum is directly associated with the appearance of motor symptoms in Parkinson's disease (PD). The progression of the disease and inherent disruption of the DA neurotransmission has been closely related to accumulation of the synaptic protein α-synuclein. However, it is still unclear how α-synuclein affects dopaminergic terminals in different areas of dorsal striatum. Here we demonstrate that the overexpression of human α-synuclein (h-α-syn) interferes with the striatal DA neurotransmission in an age-dependent manner, preferentially in the dorsolateral striatum (DLS) of PDGF-h-α-syn mice. While 3-month-old mice showed an increase at the onset of h-α-syn accumulation in the DLS, 12-month-old mice revealed a decrease in electrically-evoked DA release. The enhanced DA release in 3-month-old mice coincided with better performance in a behavioural task. Notably, DA amplitude alterations were also accompanied by a delay in the DA clearance independently from the animal age. Structurally, dopamine transporter (DAT) was found to be redistributed in larger DAT-positive clumps only in the DLS of 3- and 12-month-old mice. Together, our data provide new insight into the vulnerability of DLS and suggest DAT-related dysfunctionalities from the very early stages of h-α-syn accumulation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10761704 | PMC |
http://dx.doi.org/10.1038/s41598-023-49600-5 | DOI Listing |
J Neuropsychol
January 2025
Department of Health, Medical and Neuropsychology, Leiden University, Leiden, The Netherlands.
Up to 45% of patients with Parkinson's disease (PD) experience impulse control disorders (ICDs), characterized by a loss of voluntary control over impulses, drives or temptations. This study aimed to investigate whether previously identified genetic and psychiatric risk factors interact towards the development of ICDs in PD. A total of 278 de novo PD patients (ICD-free at enrollment) were selected from the Parkinson's Progression Markers Initiative database.
View Article and Find Full Text PDFBMC Neurosci
January 2025
Department of Operative Dentistry and Periodontology, University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany.
Background: Parkinson's disease (PD) is a neurodegenerative disorder characterized by protein aggregates mostly consisting of misfolded alpha-synuclein (αSyn). Progressive degeneration of midbrain dopaminergic neurons (mDANs) and nigrostriatal projections results in severe motor symptoms. While the preferential loss of mDANs has not been fully understood yet, the cell type-specific vulnerability has been linked to a unique intracellular milieu, influenced by dopamine metabolism, high demand for mitochondrial activity, and increased level of oxidative stress (OS).
View Article and Find Full Text PDFNeurol Sci
January 2025
Neurology Department One, Dongfang Hospital, Beijing University of Chinese Medicine, No. 6, Fangxingyuan Community, Fangzhuang, Fengtai District, Beijing, 100078, People's Republic of China.
Background: Multiple system atrophy (MSA) is a progressive neurodegenerative disease characterized by its aggressive nature. Its main clinical features include autonomic dysfunction, Parkinson's disease, and cerebellar ataxia.
Methods: We conducted a comprehensive review of the existing literature, exploring studies and reports related to the mechanisms and treatment of multiple system atrophy related neurogenic bladder.
EJNMMI Res
January 2025
Department of Nuclear Medicine, Beijing Friendship Hospital, Capital Medical University, 95 Yong'an Road, Xicheng District, Beijing, China.
Background: I-MIBG scintigraphy plays a significant role in diagnosing Parkinson's disease (PD), with most studies primarily targeting cardiac uptake and relying on traditional ratio-based parameters for assessment. However, due to variations in scanning conditions and image processing methodologies, the clinical utility of different parameters remains a subject of debate. This study aims to evaluate the diagnostic accuracy of multi-parameter I-3-Iodobenzylguanidine (MIBG) scintigraphy and to identify the most reliable metrics for distinguishing PD from Parkinson-plus syndromes.
View Article and Find Full Text PDFMol Psychiatry
January 2025
Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA.
Age-related dopamine (DA) neuron loss is a primary feature of Parkinson's disease. However, whether similar biological processes occur during healthy aging, but to a lesser degree, remains unclear. We therefore determined whether midbrain DA neurons degenerate during aging in mice and humans.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!