This study focused on investigating the dynamic structural transformations of spherical NiO/YSZ/BZY triple-phase nanocomposite particles, commonly employed for cermet anodes, during the hydrogen reduction reaction. We utilized both spherical aberration () corrected transmission electron microscopy (TEM) and high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) observation modes under a controlled gaseous environment. The environmental gas pressure was set to 1 atm (760 Torr), mirroring real-world conditions. To elucidate pre- and post-hydrogen reduction compositional alterations, we conducted elemental mapping using energy-dispersive X-ray spectroscopy (EDS). Our findings indicated that NiO nanoparticles underwent reduction to Ni particles upon heat treatments in an environment containing H gas. Significantly, this reduction of NiO led to the migration of Ni along the external surface of each composite particle, ultimately resulting in the agglomeration at the interparticle spaces among the three NiO/YSZ/BZY nanocomposite particles.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d3nr04525k | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!