We present the results of a full quantitative analysis of X-ray absorption spectroscopy (XAS) performed during the growth of ultrathin titanium disulfide (TiS) films an innovative two-step process, atomic layer deposition/molecular layer deposition (ALD/MLD) followed by annealing. This growth strategy aims at separating the growth process from the crystallization process by first creating an amorphous Ti-thiolate that is converted later to crystalline TiS thermal annealing. The simultaneous analysis of Ti and S K-edge XAS spectra, exploiting the insights from density functional theory calculations, allows us to shed light on the chemical and structural mechanisms underlying the main steps of growth. The nature of the bonding at the base of the interface creation with the SiO substrate is disclosed in this study. Evidence of a progressive incorporation of S in the amorphous Ti-thiolate is given. Finally, it is shown that the annealing step plays a critical role since the transformation of the Ti-thiolate into nanocrystalline TiS and the loss of S are simultaneously induced, validating the two-step synthesis approach, which entails distinct growth and crystallization steps. These observations contribute to a deeper understanding of the bonding mechanism at the interface and provide insights for future research in this field and the generation of ultra-thin layered materials.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d3nr04222g | DOI Listing |
Nanoscale
January 2024
Univ. Grenoble Alpes, CNRS, Grenoble-INP, LMGP, F-38000 Grenoble, France.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!