The chemokine receptor CCR5 is known to exist in cell surface subpopulations that differ in their capacity to engage ligands. One proposed explanation for this phenomenon is the presence of CCR5 species with different levels of post-translational modifications (PTMs). Tyrosine sulfation and O-glycan sialylation are PTMs that add negative charges to the extracellular domain of CCR5 and make strong contributions to chemokine binding but it is not known whether cellular mechanisms to control their levels exist. In this study we used a combination of sulfation-sensitive and sulfation-insensitive CCR5 ligands to show that the rate of turnover of CCR5 tyrosine sulfation is more rapid than the rate of turnover of the receptor itself. This suggests that the steady state level of CCR5 sulfation is maintained through the combination of tyrosine protein sulfotransferase (TPST), the trans-Golgi network (TGN)-resident 'source enzyme, and a 'sink' activity that removes tyrosine sulfation from CCR5. By measuring the effects on ligand binding of knockdown and overexpression experiments, we provided evidence that non-lysosomal cellular arylsulfatases, particularly ARSG, ARSI and ARSJ, are CCR5 sulfation 'sink' enzymes. We also used targeted knockdown and sialylation-sensitive and insensitive chemokines to identify the sialidase NEU3 as a candidate 'sink' enzyme for CCR5 O-glycan sialylation. This study provides the first experimental evidence of activity of sulfatase and sialidase 'sink' enzymes on CCR5, providing a potential mechanism for cells to control steady-state levels of these PTMs and thereby exert dynamic control over receptor-ligand interactions at the cell surface and during receptor desensitization.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10762049PMC
http://dx.doi.org/10.1038/s41598-023-50944-1DOI Listing

Publication Analysis

Top Keywords

tyrosine sulfation
12
ccr5
11
cell surface
8
o-glycan sialylation
8
rate turnover
8
ccr5 sulfation
8
'sink' enzymes
8
sulfation
5
arylsulfatases neuraminidases
4
neuraminidases modulate
4

Similar Publications

Spleen tyrosine kinase aggravates intestinal inflammation through regulating inflammatory responses of macrophage in ulcerative colitis.

Int Immunopharmacol

January 2025

Cheeloo College of Medicine, Shandong University, Jinan 250012, China; Department of Gastroenterology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining 272000, China. Electronic address:

Background: Ulcerative colitis (UC) is a persistent chronic, non-specific inflammatory disease, and macrophages play a crucial role in its pathogenesis. Spleen tyrosine kinase (Syk) is strongly associated with the pathogenesis of several inflammatory diseases. However, the role of Syk in the pathogenesis of UC is still obscure.

View Article and Find Full Text PDF

Ulcerative colitis (UC) is a chronic immune disease that is difficult to cure. We recently found that chick early amniotic fluid (ceAF) has notable anti-inflammatory and antioxidative properties, through its active components. This study demonstrates the potential of ceAF as a protective agent against UC.

View Article and Find Full Text PDF

Background: Inflammatory bowel disease (IBD) is a chronic condition influenced by diet, which affects gut microbiota and immune functions. The rising prevalence of IBD, linked to Western diets in developing countries, highlights the need for dietary interventions. This study aimed to assess the impact of white kidney beans (WKB) on gut inflammation and microbiota changes, focusing on their effects on enteric glial cells (EGCs) and immune activity in colitis.

View Article and Find Full Text PDF

Three chondroitin sulfate (CS) analogues with predominant subtypes (A, C, and E) were prepared from engineered K4 combined with regioselective sulfation. CS with the designed sulfates as the main components was characterized by nuclear magnetic resonance spectroscopy, elementary analysis, and disaccharide analysis. CS prepared from the native or degraded capsular polysaccharide had molecular weights of 1.

View Article and Find Full Text PDF

-Cresol, an environmental contaminant and endogenous metabolite derived primarily from the conversion of l-tyrosine by intestinal microflora, is gaining increasing attention, due to its potential impact on human health. Recent studies have highlighted elevated levels of -cresol and its metabolites, including -cresyl sulfate and -cresyl glucuronide, in various populations, suggesting a correlation with neurodevelopmental and neurodegenerative conditions. While the role of this compound as a uremic toxin is well established, its presence and concentration within the central nervous system (CNS) remain largely unexplored.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!